A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a ...A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.展开更多
基金supported by the National "973" Project of China(Nos.2010CB328202,2010CB328204,and 2012CB315604)the National Natural Science Foundation of China(Nos.61271191 and 61001124)+3 种基金the National "863" Project of China(No.2012AA011302)the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.