In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine ...In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.展开更多
Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most m...Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.展开更多
基金National Key Research and Development Program of China(No.2018YFC0705305)。
文摘In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution.
基金The authors acknowledge the financial support from the National Key R&D Program of China(Nos.2016YFA0202103 and 2017YFA0303701)the National Natural Science Foundation of China(Nos.91850204 and 11674167)Tao Li thanks the Dengfeng Project B of Nanjing University for the support.The authors declare that they have no conflicts of interest.
文摘Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.