In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed....In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior.展开更多
We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potent...We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potential V(x).The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h^(4)+τ^(2))in discrete l^(2),H^(1) and l^(∞) norms with mesh size h and time step τ.For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal,thus besides the standard energy method and mathematical induction method,the key technique in analysis is to estimate the nonlocal approximation errors in discrete l^(∞) and H^(1) norm by discrete maximum principle of elliptic equation and properties of some related matrix.Also some useful inequalities are established in this paper.Finally,extensive numerical results are reported to support our error estimates of the numerical methods.展开更多
In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into...In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms.展开更多
基金supported by the Project for the National Natural Science Foundation of China(No.12261103).
文摘In this paper,we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system(QZS)with a dimensionless parameter 0<ε≤1,which is inversely proportional to the acoustic speed.In the subsonic limit regime,i.e.,when 0<ε?1,the solution of QZS propagates rapidly oscillatory initial layers in time,and this brings significant difficulties in devising numerical algorithm and establishing their error estimates,especially as 0<ε?1.The solvability,the mass and energy conservation laws of the scheme are also discussed.Based on the cut-off technique and energy method,we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data,respectively,which are uniform in both time and space forε∈(0,1]and optimal at the fourth order in space.Numerical results are reported to verify the error behavior.
基金supported by Ministry of Education of Singapore grant R-146-000-120-112the National Natural Science Foundation of China(Grant No.11131005)the Doctoral Programme Foundation of Institution of Higher Education of China(Grant No.20110002110064).
文摘We study compact finite difference methods for the Schrodinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave functionψand external potential V(x).The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h^(4)+τ^(2))in discrete l^(2),H^(1) and l^(∞) norms with mesh size h and time step τ.For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal,thus besides the standard energy method and mathematical induction method,the key technique in analysis is to estimate the nonlocal approximation errors in discrete l^(∞) and H^(1) norm by discrete maximum principle of elliptic equation and properties of some related matrix.Also some useful inequalities are established in this paper.Finally,extensive numerical results are reported to support our error estimates of the numerical methods.
文摘In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms.