期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Neural Network Compact Ensemble and Its Applications
1
作者 WANG Qinghua ZHANG Youyun ZHU Yongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期209-216,共8页
There has been many methods in constructing neural network (NN) ensembles, where the method of simultaneous training has succeed in generalization performance and efficiency. But just like regular methods of constru... There has been many methods in constructing neural network (NN) ensembles, where the method of simultaneous training has succeed in generalization performance and efficiency. But just like regular methods of constructing NN ensembles, it follows the two steps, first training component networks, and then combining them. As the two steps being independent, an assumption is used to facilitate interactions among NNs during the training stage. This paper presents a compact ensemble method which integrates the two steps of ensemble construction into one step by attempting to train individual NNs in an ensemble and weigh the individual members adaptively according to their individual performance in the same learning process. This provides an opportunity for the individual NNs to interact with each other based on their real contributions to the ensemble. The classification performance of NN compact ensemble (NNCE) was validated through some benchmark problems in machine learning, including Australian credit card assessment, pima Indians diabetes, heart disease, breast cancer and glass. Compared with other ensembles, the classification error rate of NNCE can be decreased by 0.45% to 68%. In addition, the NNCE was applied to fault diagnosis for rolling element bearing. The 11 time-domain statistical features are extracted as the properties of data, and the NNCE is employed to classify the data. With the results of several experiments, the compact ensemble method is shown to give good generalization performance. The compact ensemble method can recognize the different fault types and various fault degrees of the same fault type. 展开更多
关键词 neural network compact ensemble(NNCE) combination weights classification performance fault diagnosis
下载PDF
Parallel compact integration in handwritten Chinese character recognition 被引量:1
2
作者 WANGChunheng XIAOBaihua DAIRuwei 《Science in China(Series F)》 2004年第1期89-96,共8页
In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is appl... In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification. 展开更多
关键词 handwritten Chinese character recognition (HCCR) METASYNTHESIS multi-layer perceptron (MLP) compact MLP network classifier supervised learning.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部