The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of N...The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.展开更多
A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, ...A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, one cooled by water, the other cooled by oil–water emulsion. The results of wet/dry cyclic accelerated corrosion test showed that the anti-rust property of rebar cooled by oil–water emulsion was better than that by water obviously. The results of OM, SEM and EPMA analysis indicated that these two scales contained three layers: an outer Fe_3O_4 layer, an intermediate Fe O layer with island-shaped pro-eutectoid Fe_3O_4, an inner eutectoid Fe_3O_4 layer. For the water cooled rebar, all three layers of oxide scale were relatively thin. Moreover, the scale had plenty of defects such as porosity, and crack. However, for the oil–water emulsion cooled rebar, all three layers of oxide scale were relatively thick and compact, which played an important role in protecting the rebar from atmospheric rust.展开更多
基金supported by the Innovation Team Pro-gram of Chinese Academy of Sciencesthe Program for Innovative Research Team in University (No IRT0749)
文摘The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.
基金Project(51374069) supported by the National Natural Science Foundation of China
文摘A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, one cooled by water, the other cooled by oil–water emulsion. The results of wet/dry cyclic accelerated corrosion test showed that the anti-rust property of rebar cooled by oil–water emulsion was better than that by water obviously. The results of OM, SEM and EPMA analysis indicated that these two scales contained three layers: an outer Fe_3O_4 layer, an intermediate Fe O layer with island-shaped pro-eutectoid Fe_3O_4, an inner eutectoid Fe_3O_4 layer. For the water cooled rebar, all three layers of oxide scale were relatively thin. Moreover, the scale had plenty of defects such as porosity, and crack. However, for the oil–water emulsion cooled rebar, all three layers of oxide scale were relatively thick and compact, which played an important role in protecting the rebar from atmospheric rust.