期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ti/Al_2O_3 Functionally Gradient Material Prepared by the Explosive Compaction/SHS Process 被引量:2
1
作者 Yimin LI(Powder Metallurgy Research Institute, Central-South University of Technology, Changsha 410083, China)Ziqiao ZHENG(Department of Materials Science and Engineering, Central-South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期271-275,共5页
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl... Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one 展开更多
关键词 AL SHS Ti/Al2O3 Functionally Gradient material Prepared by the Explosive Compaction/SHS Process
下载PDF
Phenomenological Modeling of Warm Compaction and Experimental Verification 被引量:1
2
作者 Shiju Guo, Tao Lin (Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第4期292-295,共4页
A phenomenological modeling approach to establishing the warm compaction equation and curves by modifying the regression equation of the room-temperature compaction curve is presented. An enhanced factor of compactin... A phenomenological modeling approach to establishing the warm compaction equation and curves by modifying the regression equation of the room-temperature compaction curve is presented. An enhanced factor of compacting pressure is introduced into the equation in order to reveal the effects of powder/die temperature and filling height of powders on green density. Compaction curves yielded from this equation are consistent with the experimental data of ATOMET grade iron powders. The curves show that the powder/ die temperature should reduce as the filling heights of powders increase and that in some cases warm compaction can not give rise to a higher green density. 展开更多
关键词 powder metallurgy warm compaction compaction equation materials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部