期刊文献+
共找到3,380篇文章
< 1 2 169 >
每页显示 20 50 100
Localized wave solutions and interactions of the (2+1)-dimensional Hirota-Satsuma-Ito equation
1
作者 巩乾坤 王惠 王云虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期409-416,共8页
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ... This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs. 展开更多
关键词 lump solution rogue wave solution breather wave solution (2+1)-dimensional Hirota-Satsuma-Ito equation
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
2
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation BIFURCATIONS Phase Portrait Analytical Periodic wave solution Periodic Cusp wave solution
下载PDF
GLOBAL CLASSICAL SOLUTIONS OF SEMILINEAR WAVE EQUATIONS ON R^(3)×T WITH CUBIC NONLINEARITIES
3
作者 陶飞 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期115-128,共14页
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ... In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates. 展开更多
关键词 semilinear wave equation product space decay estimate energy estimate global solution
下载PDF
Diversity of Rogue Wave Solutions to the (1+1)-Dimensional Boussinesq Equation
4
作者 Xiaoming Wang Jingjie Huang 《Journal of Applied Mathematics and Physics》 2024年第2期458-467,共10页
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ... A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β. 展开更多
关键词 Boussinesq Equation Rogue wave Periodically Homoclinic solution Spatiotemporal Structure
下载PDF
Traveling Wave Solutions of a SIR Epidemic Model with Spatio-Temporal Delay
5
作者 Zhihe Hou 《Journal of Applied Mathematics and Physics》 2024年第10期3422-3438,共17页
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t... In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution. 展开更多
关键词 Susceptible-Infected-Recovered Epidemic Model Traveling wave solutions Spatio-Temporal Delay Schauder Fixed Point Theorem
下载PDF
New Compacton-Like and Solitary Pattern-Like Solutions of (2+1)-Dimensional Generalization of Modified KdV Equation
6
作者 CHEN Yong YAN Zhen-Ya 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5X期789-792,共4页
Recently some (1+1)-dimensional nonlinear wave equations with linearly dispersive terms were shown to possess compacton-like and solitary pattern-like solutions. In this paper, with the aid of Maple, new solutions of ... Recently some (1+1)-dimensional nonlinear wave equations with linearly dispersive terms were shown to possess compacton-like and solitary pattern-like solutions. In this paper, with the aid of Maple, new solutions of (2+1)-dimensional generalization of mKd V equation, which is of only linearly dispersive terms, are investigated using three new transformations. As a consequence, it is shown that this (2+ 1)-dimensional equation also possesses new compacton-like solutions and solitary pattern-like solutions. 展开更多
关键词 (2+1)-dimensional nonlinear wave equation comptacton-like solution solitary pattern-like solution
下载PDF
On the Asymptotic Property of Solutions to Some Nonlinear Dissipative Wave Equations 被引量:1
7
作者 梁保松 叶耀军 李慧平 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期83-86,共4页
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
关键词 nonlinear wave equation asymtotic property global solution
下载PDF
ASYMPTOTIC METHOD OF TRAVELLING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR REACTION DIFFUSION EQUATION 被引量:9
8
作者 莫嘉琪 张伟江 何铭 《Acta Mathematica Scientia》 SCIE CSCD 2007年第4期777-780,共4页
In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for th... In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for the corresponding problem is obtained. 展开更多
关键词 Travelling wave solution homotopic method of solution reaction diffusion
下载PDF
Exact travelling wave solutions for (1+ 1)-dimensional dispersive long wave equation 被引量:15
9
作者 刘成仕 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第9期1710-1715,共6页
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral fo... A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems. 展开更多
关键词 complete discrimination system for polynomial (1+1)-dimensional dispersive long wave equation travelling wave solution
下载PDF
New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov-Kuzentsov equation 被引量:14
10
作者 套格图桑 斯仁道尔吉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1143-1148,共6页
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent... In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term. 展开更多
关键词 generalized mKdV equation generalized Zakharov-Kuzentsov equation nonlinear evolution equation auxiliary equation exact solitary wave solutions
下载PDF
The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion 被引量:7
11
作者 刘成仕 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1832-1837,共6页
Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-par... Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion. 展开更多
关键词 classification of travelling wave solution symmetry group Camassa-Holm equation with dispersion superposition of solutions
下载PDF
A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice 被引量:12
12
作者 扎其劳 斯仁道尔吉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第3期475-477,共3页
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference... Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations. 展开更多
关键词 hyperbolic function approach nonlinear differential-difference equation exact solitary wave solution
下载PDF
Some Possible Solutions of Nonlinear Internal Inertial Gravity Wave Equations in the Atmosphere 被引量:6
13
作者 李国平 卢敬华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1996年第2期244-252,共9页
In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ... In this paper, the nonlinear internal inerntial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary solitary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion. 展开更多
关键词 Internal inertial gravity wave Nonlinear wave solution Solitary wave
下载PDF
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED DODD-BULLOUGH-MIKHAILOV EQUATION 被引量:7
14
作者 Tang Shengqiang Huang Wentao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第1期21-28,共8页
In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under d... In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained. 展开更多
关键词 unbounded travelling wave solution periodic travelling wave solution the generalized Dodd- Bullough-Mikhailov equation.
下载PDF
The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations 被引量:13
15
作者 LI Ling-xiao LI Er-qiang WANG Ming-liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期454-462,共9页
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present... The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves. 展开更多
关键词 The (G /G 1/G)-expansion method travelling wave solutions homogeneous balance solitary wave solutions Zakharov equations.
下载PDF
Invariant Sets and Exact Solutions to Higher-Dimensional Wave Equations 被引量:11
16
作者 QU Gai-Zhu ZHANG Shun-Li ZHU Chun-Rong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第5期1119-1124,共6页
The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = ... The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations. 展开更多
关键词 wave equation invariant set exact solution
下载PDF
Wave packet solutions in a bounded equatorial ocean and its interannual and decadal variabilities 被引量:2
17
作者 Dongling Zhang Juan Zhu +1 位作者 Xu Lu Ming Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第3期45-59,共15页
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results ... Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans. 展开更多
关键词 BOUNDED EQUATORIAL OCEAN wave packet solutions DECADAL variability Kelvin wave Rossby wave
下载PDF
Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation 被引量:16
18
作者 LIU Cheng-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4X期601-604,共4页
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhom... Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero- Degasperis-Focas equation. 展开更多
关键词 classification of travelling wave solution symmetry group Calogero-Degasperis-Focas equation
下载PDF
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations 被引量:6
19
作者 YAN Zhi-Lian LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期479-482,共4页
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
关键词 approximate equations for long water waves variant Boussinesq equations non-traveling wave solution solitary wave solution
下载PDF
TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION 被引量:4
20
作者 Fan Engui E mail:faneg@fudan.edu.cnInstituteofMath.,FudanUniv.,Shanghai200433 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第2期149-155,共7页
A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the pa... A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation. 展开更多
关键词 Nonlinear evolution equation travelling wave solution symbolic computation.
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部