Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,...Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.展开更多
[Objectives]To explore the hypoglycemic effect of Radix Et Rhizoma Salviae Miltiorrhizae,Guixi green tea and their compatibility on mice,so as to provide more options for the adjuvant treatment of diabetes and improve...[Objectives]To explore the hypoglycemic effect of Radix Et Rhizoma Salviae Miltiorrhizae,Guixi green tea and their compatibility on mice,so as to provide more options for the adjuvant treatment of diabetes and improve the comprehensive utilization value of Guixi green tea.[Methods]After being fed adaptively for 7 d,60 SPF-grade male mice were intraperitoneally injected with alloxouracil(180 mg/kg)to induce hyperglycemia model,from which 35 mice with a successful model were selected.They were randomly divided into 5 groups(Danshen group,green tea group,compatible group,positive control group and blank control group),with 7 animals in each group.The mice in all groups were administered according to the dose of 200 mg/kg once a day for 15 d.After the last administration,their body weight was measured on the 15 th day after fasting for 12 h,and their fasting blood glucose was measured by tail clipping.[Results]After modeling,the mice in each group showed typical hyperglycemia symptoms,namely obvious polydipsia,polyphagia,polyuria and weight loss.Compared with the blank control group,Danshen group and green tea group had obvious hypoglycemic effect(P<0.05),and compatible group had significant hypoglycemic effect(P<0.01).Compared with the blank control group,the weight loss of diabetic mice could also be inhibited in green tea group and compatible group(P<0.05).[Conclusions]Danshen,Guixi green tea and their compatibility had the effect of lowering blood sugar,among which the compatible group had the most obvious effect.展开更多
[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fa...[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fasting blood glucose of mice were measured after 7 and 14 d of administration,and the biochemical indicators of blood lipids(TC,HDL-C,and LDL-C)were detected after 14 d of administration.[Results]Compared with the Radix Puerariae group and Radix Rehmanniae group,the compatibility group(1:2)had the best hypoglycemic effect(P<0.05),and TC and LDL-C in the compatibility group(2:1)significantly decreased(P<0.05),while HDL-C in the compatibility group(1:1)significantly increased(P<0.05).[Conclusions]Radix Puerariae,Radix Rehmanniae and their combination can reduce the blood glucose of diabetic mice.The compatibility group(1:2)had a significant hypoglycemic effect(P<0.05),and LDL-C in the compatibility group(2:1)significantly declined,while HDL-C in the compatibility group(1:1)rose significantly.展开更多
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金Funded by the National Natural Science Foundation of China(No.52008069)。
文摘Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.
基金Supported by the National Innovation Planning Project for University Students (202210599001).
文摘[Objectives]To explore the hypoglycemic effect of Radix Et Rhizoma Salviae Miltiorrhizae,Guixi green tea and their compatibility on mice,so as to provide more options for the adjuvant treatment of diabetes and improve the comprehensive utilization value of Guixi green tea.[Methods]After being fed adaptively for 7 d,60 SPF-grade male mice were intraperitoneally injected with alloxouracil(180 mg/kg)to induce hyperglycemia model,from which 35 mice with a successful model were selected.They were randomly divided into 5 groups(Danshen group,green tea group,compatible group,positive control group and blank control group),with 7 animals in each group.The mice in all groups were administered according to the dose of 200 mg/kg once a day for 15 d.After the last administration,their body weight was measured on the 15 th day after fasting for 12 h,and their fasting blood glucose was measured by tail clipping.[Results]After modeling,the mice in each group showed typical hyperglycemia symptoms,namely obvious polydipsia,polyphagia,polyuria and weight loss.Compared with the blank control group,Danshen group and green tea group had obvious hypoglycemic effect(P<0.05),and compatible group had significant hypoglycemic effect(P<0.01).Compared with the blank control group,the weight loss of diabetic mice could also be inhibited in green tea group and compatible group(P<0.05).[Conclusions]Danshen,Guixi green tea and their compatibility had the effect of lowering blood sugar,among which the compatible group had the most obvious effect.
基金Supported by the National Innovation Planning Project for University Students in 2022 in Guangxi(S202210599012).
文摘[Objectives]To explore the effects of the compatibility of Radix Puerariae and Radix Rehmanniae on blood glucose and blood lipids in diabetic mouses.[Methods]Diabetic mouse model was established.The body weight and fasting blood glucose of mice were measured after 7 and 14 d of administration,and the biochemical indicators of blood lipids(TC,HDL-C,and LDL-C)were detected after 14 d of administration.[Results]Compared with the Radix Puerariae group and Radix Rehmanniae group,the compatibility group(1:2)had the best hypoglycemic effect(P<0.05),and TC and LDL-C in the compatibility group(2:1)significantly decreased(P<0.05),while HDL-C in the compatibility group(1:1)significantly increased(P<0.05).[Conclusions]Radix Puerariae,Radix Rehmanniae and their combination can reduce the blood glucose of diabetic mice.The compatibility group(1:2)had a significant hypoglycemic effect(P<0.05),and LDL-C in the compatibility group(2:1)significantly declined,while HDL-C in the compatibility group(1:1)rose significantly.