Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and ...When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network. We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory. Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
文摘When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network. We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory. Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.