The authors give the first convergence proof for the Lax-Friedrichs finite differencescheme for non-convex genuinely nonlinear scalar conservation laws of the formu_t + f(k(x, t), u)_x = 0,where the coefficient k(x, t...The authors give the first convergence proof for the Lax-Friedrichs finite differencescheme for non-convex genuinely nonlinear scalar conservation laws of the formu_t + f(k(x, t), u)_x = 0,where the coefficient k(x, t) is allowed to be discontinuous along curves in the (x, t)plane. In contrast to most of the existing literature on problems with discontinuouscoefficients, here the convergence proof is not based on the singular mapping approach,but rather on the div-curl lemma (but not the Young measure) and a Lax type en-tropy estimate that is robust with respect to the regularity of k(x, t). Following [14],the authors propose a definition of entropy solution that extends the classical Kruzkovdefinition to the situation where k(x, t) is piecewise Lipschitz continuous in the (x, t)plane, and prove the stability (uniqueness) of such entropy solutions, provided that theflux function satisfies a so-called crossng condition, and that strong traces of the solu-tion exist along the curves where k(x, t) is discontinuous. It is shown that a convergentsubsequence of approximations produced by the Lax-Friedrichs scheme converges tosuch an entropy solution, implying that the entire computed sequence converges.展开更多
In this paper, we study the following Cauchy problem.and obtain the convergence of L bounded approximating Sequences generated by the methodof vanishing viscidity and compensated compactness.
In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and...In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.展开更多
In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactn...In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactness estimates of the viscosity solutions because the system has been generalized from 2×2 to n×n and more linearly degenerate characteristic fields emerged, and the emergence of singularity in the region {v1= 0} is another difficulty.We obtain the existence of the global weak solutions using the compensated compactness method coupled with the construction of entropy-entropy flux and BV estimates on viscous solutions.展开更多
基金Project supported by the BeMatA Program of the Research Council of Norway and the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282
文摘The authors give the first convergence proof for the Lax-Friedrichs finite differencescheme for non-convex genuinely nonlinear scalar conservation laws of the formu_t + f(k(x, t), u)_x = 0,where the coefficient k(x, t) is allowed to be discontinuous along curves in the (x, t)plane. In contrast to most of the existing literature on problems with discontinuouscoefficients, here the convergence proof is not based on the singular mapping approach,but rather on the div-curl lemma (but not the Young measure) and a Lax type en-tropy estimate that is robust with respect to the regularity of k(x, t). Following [14],the authors propose a definition of entropy solution that extends the classical Kruzkovdefinition to the situation where k(x, t) is piecewise Lipschitz continuous in the (x, t)plane, and prove the stability (uniqueness) of such entropy solutions, provided that theflux function satisfies a so-called crossng condition, and that strong traces of the solu-tion exist along the curves where k(x, t) is discontinuous. It is shown that a convergentsubsequence of approximations produced by the Lax-Friedrichs scheme converges tosuch an entropy solution, implying that the entire computed sequence converges.
文摘In this paper, we study the following Cauchy problem.and obtain the convergence of L bounded approximating Sequences generated by the methodof vanishing viscidity and compensated compactness.
文摘In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.
基金supported by the National Science Foundation of China(11572148,11671193)the National Research Foundation for the Doctoral Program of Higher Education of China(20133218110025)
文摘In this article, we give the existence of global L∞bounded entropy solutions to the Cauchy problem of a generalized n × n hyperbolic system of Le Roux type. The main difficulty lies in establishing some compactness estimates of the viscosity solutions because the system has been generalized from 2×2 to n×n and more linearly degenerate characteristic fields emerged, and the emergence of singularity in the region {v1= 0} is another difficulty.We obtain the existence of the global weak solutions using the compensated compactness method coupled with the construction of entropy-entropy flux and BV estimates on viscous solutions.