A novel dispersion slope compensator is proposed and fabricated using a sampled fiber grating. The dispersion slope of this compensator is demonstrated to match that of Coming LS fiber for a multi-channel 50GHz WDM sy...A novel dispersion slope compensator is proposed and fabricated using a sampled fiber grating. The dispersion slope of this compensator is demonstrated to match that of Coming LS fiber for a multi-channel 50GHz WDM system.展开更多
The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we t...The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we take the opposite direction and show how an optical fiber with a high-positive dispersion coefficient is used for dispersion compensation. Our optical dispersion compensating structure is the optical implementation of an iterative algorithm in signal processing. The proposed dispersion compensating system is constructed by cascading a number of compensating sub-systems, and its compensation capability is improved by increasing the number of embedded sub-systems. We also show that the compensation capability is a trade-off between the transmission length and bandwidth. We use the simulation results to validate the performance of the introduced dispersion compensating module. Photonic crystal fibers with high-positive dispersion coefficients can be used for constructing the proposed optical dispersion compensating module.展开更多
We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be...We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.展开更多
文摘A novel dispersion slope compensator is proposed and fabricated using a sampled fiber grating. The dispersion slope of this compensator is demonstrated to match that of Coming LS fiber for a multi-channel 50GHz WDM system.
文摘The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we take the opposite direction and show how an optical fiber with a high-positive dispersion coefficient is used for dispersion compensation. Our optical dispersion compensating structure is the optical implementation of an iterative algorithm in signal processing. The proposed dispersion compensating system is constructed by cascading a number of compensating sub-systems, and its compensation capability is improved by increasing the number of embedded sub-systems. We also show that the compensation capability is a trade-off between the transmission length and bandwidth. We use the simulation results to validate the performance of the introduced dispersion compensating module. Photonic crystal fibers with high-positive dispersion coefficients can be used for constructing the proposed optical dispersion compensating module.
基金supported by the National Natural Science Foundation of China(Nos.11574397,61775238,61705262,and 61705263)the Scientific Research Project of National University of Defense Technology(No.JC15-11-02)
文摘We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.