期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Force Compensation Control for Electro-Hydraulic Servo System with Pump-Valve Compound Drive via QFT-DTOC
1
作者 Kaixian Ba Yuan Wang +4 位作者 Xiaolong He Chunyu Wang Bin Yu Yaliang Liu Xiangdong Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期228-246,共19页
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi... Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot. 展开更多
关键词 Legged robot Pump-valve compound drive system(PCDS) Force compensation control Quantitative feedback theory(QFT) Disturbance torque observer(DTO)
下载PDF
Parallel Distributed Compensation/H∞Control of Lane‑keeping System Based on the Takagi‑Sugeno Fuzzy Model 被引量:3
2
作者 Wuwei Chen Linfeng Zhao +1 位作者 Huiran Wang Yangcheng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期126-138,共13页
Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control m... Current research on lane-keeping systems ignores the effect of the driver and external resistance on the accuracy of tracking the lane centerline.To reduce the lateral deviation of the vehicle,a lane-keeping control method based on the fuzzy Takagi-Sugeno(T-S)model is proposed.The method adopts a driver model based on near and far visual angles,and a driver-road-vehicle closed-loop model based on longitudinal nonlinear velocity variation,obtaining the expected assist torque with a robust H∞controller which is designed based on parallel distributed compensation and linear matrix inequality.Considering the external influences of tire adhesion and aligning torque when the vehicle is steering,a feedforward compensation control is designed.The electric power steering system is adopted as the actuator for lane-keeping,and active steering redressing is realized by a control motor.Simulation results based on Carsim/Simulink and real vehicle test results demonstrate that the method helps to maintain the vehicle in the lane centerline and ensures driving safety. 展开更多
关键词 Driver model Lane-keeping system T-S fuzzy model H∞controller Feedforward compensation control
下载PDF
Primary frequency control considering communication delay for grid-connected offshore wind power systems
3
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
4
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
Pressure-tracking control of a novel electro-hydraulic braking system considering friction compensation 被引量:12
5
作者 雍加望 高峰 +1 位作者 丁能根 HE Yu-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1909-1921,共13页
This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consis... This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop(HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances. 展开更多
关键词 electro-hydraulic brake brake-by-wire Kalman filter sliding mode control pressure-tracking friction compensation
下载PDF
Dynamic Velocity Feed-Forward Compensation Control with RBF-NN System Identification for Industrial Robots 被引量:1
6
作者 宋伟科 肖聚亮 +1 位作者 王刚 王国栋 《Transactions of Tianjin University》 EI CAS 2013年第2期118-126,共9页
A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The prop... A dynamic velocity feed-forward compensation (RBF-NN) dynamic model identification was presented for control (DVFCC) approach with RBF neural network the adaptive trajectory tracking of industrial robots. The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model. The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accu- racy. The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can con- vert torque signal into velocity in the standard industrial controller. Then, the need for a torque control interface was avoided in the real-time dynamic control of industrial robot. The simulations and experiments were carried out on a gas cutting manipulator. The results show that the proposed control approach can reduce steady-state error, suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space, especially under high- speed condition. 展开更多
关键词 dynamic velocity feed-forward compensation control RBF-NN inverse velocity controller gas cutting manipulator
下载PDF
ADRC based control for a class of input time delay systems 被引量:5
7
作者 Dongyang Zhang Xiaolan Yao +1 位作者 Qinghe Wu Zhuoyue Song 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1210-1220,共11页
This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-fo... This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design. 展开更多
关键词 time-delay system feed-forward compensation active disturbance rejection control(FFC-ADRC) tracking differentiator(TD) Lyapunov theory bound-input-bound-output(BIBO) stability
下载PDF
A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC 被引量:4
8
作者 Yanhong Luo Shengnan Zhao +1 位作者 Dongsheng Yang Huaguang Zhang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期48-56,共9页
For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we prese... For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Backstepping control radial basis function neural network(RBFNN) robust adaptive control thyristor controlled series compensation(TCSC) uniform ultimate boundedness(UUB)
下载PDF
Ground demonstration system based on in-orbit assembly oriented manipulator flexible force control 被引量:2
9
作者 乔冠宇 Gao Huibin +3 位作者 Peng Cheng Gu Yingying Xu Zhenbang Xu Boqian 《High Technology Letters》 EI CAS 2017年第3期271-278,共8页
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh... To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots. 展开更多
关键词 flexible force control gravity compensation ground demonstration system in-orbit assembly manipulator six-dimensional force/torque sensor
下载PDF
A comparing design of satellite attitude control system based on reaction wheel
10
作者 程颢 葛升民 沈毅 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第5期638-642,共5页
The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system. To solve this problem, the idea of speed feedback compensa... The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system. To solve this problem, the idea of speed feedback compensation control reaction wheel is put forward. This paper introduces the comparison on design and performance of two satellite attitude control systems, which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel. Analysis shows that the speed feedback compensation control flywheel system may effectively suppress the torque fluctuation. Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance. 展开更多
关键词 compensation control reaction wheel attitude control
下载PDF
A Direct Compensative Robust Optimal Control (DCROC) Law for Ship Straight-line Track-keeping 被引量:1
11
作者 李文魁 田蔚风 +2 位作者 周岗 陈永冰 周永余 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第3期364-369,共6页
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ... A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law. 展开更多
关键词 SHIP TRACK-KEEPING direct compensative robust optimal control (DCROC) Lyapunov stability
下载PDF
New design of high-precision oven controlled crystal oscillator 被引量:1
12
作者 董绍锋 杜保强 周渭 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期362-369,共8页
Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is pro... Combining oven controlled technique,digital compensation,high-resolution frequency difference measurement and self-calibration technique,a new design method of precise oven controlled crystal oscillator(OCXO) is proposed.Fine compensation is made in the vicinity of the crystal temperature inflection point by using the non-real-time temperature compensation strategy,and self-calibration system is integrated in the crystal.The method improves the digital compensated phase noise,simplifies the traditional OCXO development system,reduces the cost and shortens the developing cycle.Experiment results show that with a standard reference signal and self-calibration updated data,the oscillator can work stable and achieve its best performence.The performance index of crystal oscillator had an improvement with one to two orders of magnitude on the basis of original technical index.The method is widely used in the improvement of high-end crystal oscillator and atomic clock. 展开更多
关键词 crystal oscillator temperature compensation non-real-time control frequency difference measurement self-calibration
下载PDF
DOUBLE LOOP ACTIVE VIBRATION CONTROL OF PNEUMATIC ISOLATOR WITH TWO SEPARATE CHAMBERS
13
作者 YANG Qingjun LI Jun WANG Zuwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期610-613,共4页
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance... A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously. 展开更多
关键词 Pneumatic isolator Active vibration control Double-loop control Two separate chambers Mass flow rate compensation (MFRC)
下载PDF
STUDY ON THE FEEDFORWARD COMPENSATION OF THE MOTIONERRORS OF NC MACHINE TOOLS
14
作者 Yu Wenhua Wu Zhaotong (Zhejiang University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1996年第4期300-305,299,共2页
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys... A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated. 展开更多
关键词 Numerical controlled machine tool Motion error Feedforward compensation
全文增补中
Valve-based compensation for controllability improvement of the energy-saving electrohydraulic flow matching system 被引量:9
15
作者 Min CHENG Bing XU +1 位作者 Jun-hui ZHANG Ru-qi OING2 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第6期430-442,共13页
The energy-saving electrohydraulic flow matching (EFM) system opens up an opportunity to minimize valve losses by fully opening the control valves, but the controllability is lost under overrunning load conditions. ... The energy-saving electrohydraulic flow matching (EFM) system opens up an opportunity to minimize valve losses by fully opening the control valves, but the controllability is lost under overrunning load conditions. To address this issue, this paper proposes a valve-based compensator to improve the controllability of the energy-saving EFM system. The valve-based compensator consists of a static compensator and a differential dynamic compensator based on load conditions. The energy effi- ciency, the stability performance, and the damping characteristic are analyzed under different control parameters. A parameter selection method is used to improve the efficiency, ensure the stability performance, and obtain good dynamic behavior. A test rig with a 2-t hydraulic excavator is built, and experimental tests are carried out to validate the proposed valve-based compensator. The experimental results indicate that the controllability of the EFM system is improved, and the characteristic of high energy efficiency is obtained by the proposed compensator. 展开更多
关键词 compensation control Energy efficient Flow matching Mobile machinery
原文传递
Compensation Control and Parameters Design for High Frequency Resonance Suppression of MMC-HVDC System 被引量:5
16
作者 Yunfeng Li Hui Pang +3 位作者 Ming Kong Jingjing Lu Ke Ji Guangfu Tang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第6期1161-1175,共15页
Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inducta... Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations. 展开更多
关键词 compensation control high frequency resonance high voltage direct current impedance model modular multilevel converter parameter design time delay
原文传递
Phase deviation of semi-active suspension control and its compensation with inertial suspension
17
作者 Yi Yang Changning Liu +1 位作者 Long Chen Xiaoliang Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第6期141-153,共13页
The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control st... The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly. 展开更多
关键词 Vibration isolation Vibration control Phase deviation control compensation Semi-active suspension
原文传递
Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure 被引量:4
18
作者 Jun Wang Hai-Long Pei Nai-Zhou Wang 《International Journal of Automation and computing》 EI CSCD 2013年第5期463-471,共9页
The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed wh... The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model. 展开更多
关键词 Fault compensation fault-tolerant control robust adaptive control fault reconstruction actuator failure
原文传递
Theoretical Study of Double Cost Function Linear Quadratic Regulator(LQR)
19
作者 姜澜 王信义 永井正夫 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期80-86,共7页
Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe... Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function. 展开更多
关键词 optimal control linear quadratic regulator (LQR) search algorithm front steering angle compensation control
下载PDF
Rock dynamics in deep mining 被引量:8
20
作者 Manchao He Qi Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1065-1082,共18页
Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic ... Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic disasters,such as rock bursts,coal bursts,mine pressure bumps,and mine earthquakes.According to the occurrence mechanism of different types of dynamic disasters,we establish a compensation control theory based on excavation and mining effects.On the basis,we propose three key technologies:high prestress compensation technology for the roadway,pressure relief technology using directional roof cutting,and the goaf filling technology using broken rock dilation.These three technologies constitute the compensation control method for dynamic disasters in deep mines.Finally,this method was successfully applied in a deep coal mine with high stress,with monitored results suggesting its rationality.This work provides a new concept and control method for the prevention of rock dynamic disasters in deep mines. 展开更多
关键词 Rock burst Coal burst Mine pressure bump Mine earthquake Excavation compensation control Mining compensation control
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部