期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
New Method to Improve Dynamic Stiffness of Electro-hydraulic Servo Systems 被引量:9
1
作者 BAI Yanhong QUAN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期997-1005,共9页
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so... Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems. 展开更多
关键词 electro-hydraulic servo system flow feedforward compensation dynamic load stiffness double-valve actuation
下载PDF
DOUBLE LOOP ACTIVE VIBRATION CONTROL OF PNEUMATIC ISOLATOR WITH TWO SEPARATE CHAMBERS
2
作者 YANG Qingjun LI Jun WANG Zuwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期610-613,共4页
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance... A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously. 展开更多
关键词 Pneumatic isolator Active vibration control Double-loop control Two separate chambers Mass flow rate compensation (MFRC)
下载PDF
Hot Deformation Behavior and Flow Stress Prediction of Ultra Purified 17% Cr Ferritic Stainless Steel Stabilized with Nb and Ti 被引量:4
3
作者 Fei GAO Fu-xiao YU +1 位作者 Hai-tao LIU Zhen-yu LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第9期827-836,共10页
The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was ca... The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was carried out at the temperatures ranging from 700 to 1 100℃ and strain rates from 1to 10s-1.The microstructure was investigated using electron backscattering diffraction.The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent type equation.The effect of strain was incorporated in the constitutive equation by establishing polynomial relationship between the material constants and strain.A sixth order polynomial was suitable to represent the effect of strain.The modified constitutive equation considering the effect of strain was developed and could predict the flow stress throughout the deformation conditions except at800℃in 1s-1 and at 700℃in 5and 10s-1.Losing the reliability of the modified constitutive equation was possibly ascribed to the increase in average Taylor factor at 800℃in 1s-1 and the increase in temperature at 700℃in 5and10s-1 during hot deformation.The optimum window for improving product quality of the ferritic stainless steels was identified as hot rolling at a low finisher entry temperature of 700℃,which can be achieved in practical production. 展开更多
关键词 17%Cr ferritic stainless steel hot deformation flow stress constitutive equation strain compensation
原文传递
Thermal and tilt effects on bearing characteristics of hydrostatic oil pad in rotary table 被引量:3
4
作者 刘志峰 湛承鹏 +3 位作者 程强 赵永胜 李小燕 王义达 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第4期585-595,共11页
Hydrostatic pads are key components of a constant flow compensation hydrostatic rotary table. The tilt and thermal effects due to the partial load, the manufacturing errors and the friction must be considered. However... Hydrostatic pads are key components of a constant flow compensation hydrostatic rotary table. The tilt and thermal effects due to the partial load, the manufacturing errors and the friction must be considered. However, designers are more likely inclined to ignore these effects. In this work, the coupled characteristics of the tilt and thermal effects are studied. A coupled mathematical model to calculate the bearing properties of the pads is built. This model takes into consideration of tilt and thermal effects and is used to solve the flow problem by the finite difference method. The characteristics of the oil pad, including, the recess pressures, the load carrying capacity and the damping coefficients, are obtained and the tilt and thermal effects are analyzed. It is observed that the tilt has a tremendous impact on the bearing characteristics of the hydrostatic pad. The recess pressure, the load carrying capacity and the stiffness are reduced by 50% and the pressure distribution and the temperature distribution of the oil film also change significantly. When the pads work under a tilt operation, a larger land width is better for its bearing properties. It is also observed that the thermal effect is significant and cannot be ignored. 展开更多
关键词 thermo-hydrodynamic lubricant TILTING Reynolds equations constant flow compensation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部