期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on Positioning Error Compensation for Micro Milling Machine Tool
1
作者 Ming-Jun Chen Wen-Lan Tian +1 位作者 Yong Xiao Yan Jiang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第5期101-106,共6页
Micro milling has many advantages in fabricating three-dimensional(3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure wi... Micro milling has many advantages in fabricating three-dimensional(3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure with high profile precision and good surface quality. Meanwhile, the method of position error compensation is a good way to improve the accuracy of the micro milling machine tools. In this paper,a software method is adopted to compensate the positioning error and improve the positioning accuracy. According to error cancellation theory,the compensation values are generated and compensation tables are built to adjust the positioning error in the NC system based on Industrial Motion and Automation Control( IMAC). The positioning accuracy of linear motor is ± 0. 3 μm without backlash after compensation. In order to verify the effectiveness of compensation on the machining performance,concave spherical surfaces are processed on the micro milling machine tool. The experimental results show that the profile radius error of the spherical surface machined with compensation decreases more than 60%. 展开更多
关键词 positioning error compensation micro milling IMAC spherical surface
下载PDF
Trajectory compensation for multi-robot coordinated lifting system considering elastic catenary of the rope
2
作者 ZHAO Xiangtang ZHAO Zhigang +2 位作者 SU Cheng MENG Jiadong WANG Baoxi 《High Technology Letters》 EI CAS 2024年第3期252-262,共11页
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the... The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。 展开更多
关键词 multi-robot lifting system deformation of flexible rope elastic catenary model compensation principle of position and posture trajectory compensation
下载PDF
Er-doped concentric-cores optical fiber for simultaneous amplification and compensation of positive dispersion 被引量:1
3
作者 P.ramodR.Watekar M.L.N.Goswami +2 位作者 H.N.Acharya J.C.Biswas B.P.Pal 《Chinese Optics Letters》 SCIE EI CAS CSCD 2004年第1期12-14,共3页
The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using 100-mW pump power... The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using 100-mW pump power and 980-nm wavelength) with dispersion of about -165 ps/(km·nm). It is useful for the optical fiber network where amplification as well as negative dispersion are necessary. 展开更多
关键词 nm Er-doped concentric-cores optical fiber for simultaneous amplification and compensation of positive dispersion MCVD
原文传递
Chord error constraint based integrated control strategy for contour error compensation
4
作者 Tie ZHANG Caicheng WU Yanbiao ZOU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第4期645-658,共14页
As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour e... As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks. 展开更多
关键词 cross-coupling controller contour error tracking error position error compensator feed rate regulator
原文传递
Adaptive sliding mode control of the A-axis used for blisk manufacturing 被引量:7
5
作者 Zhao Pengbing Shi Yaoyao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期708-715,共8页
As a key assembly in the 5-axis CNC machine tools, positioning precision of the A-axis directly affects the machining accuracy and surface quality of the parts. First of all, mechanical structure and control system of... As a key assembly in the 5-axis CNC machine tools, positioning precision of the A-axis directly affects the machining accuracy and surface quality of the parts. First of all, mechanical structure and control system of the A-axis are designed. Then, considering the influence of nonlin- ear friction, backlash, unmodeled dynamics, uncertain cutting force and other external disturbance on the control precision of the A-axis, an adaptive sliding mode control (ASMC) based on extended state observer (ESO) is proposed. ESO is employed to estimate the state variables of the unknown system and an adaptive law is adopted to compensate for the input dead-zone caused by friction, backlash and other nonlinear characteristics. Finally, stability of the closed-loop system is guaran- teed by the Lyapunov theory. Positioning experiments illustrate the perfect estimation of ESO and the stronger anti-interference and robustness of ASMC, which can improve the control precision of the A-axis by about 40 times. Processing experiments show that the ASMC can reduce the waviness, averaKe error and roughness of the nrocessed surface by 35.63%, 31.31% and 30.35%, respectively. 展开更多
关键词 A-axis Blisk processing Nonlinear compensation positioning control Sliding mode control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部