This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consis...This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop(HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances.展开更多
A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design met...A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter's dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles' dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.展开更多
基金Projects(51405008,51175015)supported by the National Natural Science Foundation of ChinaProject(2012AA110904)supported by the National High Technology Research and Development Program of China
文摘This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop(HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances.
基金supported by the Natural Science Foundation of Tianjin(No.14JCZDJC31900)
文摘A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter's dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles' dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.