期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Examining spatio-temporal variations in carbon budget and carbon compensation zoning in Beijing-Tianjin-Hebei urban agglomeration based on major functional zones 被引量:3
1
作者 XIA Siyou YANG Yu 《Journal of Geographical Sciences》 SCIE CSCD 2022年第10期1911-1934,共24页
Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative g... Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative governance of the regional ecological environment,and achieving high-quality development.Such work can also contribute to achieving peak emissions and carbon neutrality.This paper constructs a theoretical framework for the carbon budget and carbon compensation from the perspective of the MFZ,uses 157 county-level units of the Beijing-Tianjin-Hebei urban agglomeration(BTHUA)as the study area,and introduces the concentration index,normalized revealed comparative advantage index,and Self Organizing Mapping-K-means(SOM-K-means)model to examine spatio-temporal variations in the carbon budget and carbon compensation zoning for the BTHUA from the perspective of MFZs.The authors propose a scheme for the spatial minimization of carbon emissions as oriented by low-carbon development.The results show that:(1)From 2000 to 2017,the carbon budget exhibited an upward trend of volatility,its centralization index was higher than the“warning line”of 0.4,and large regional differences in it were noted on the whole.(2)There were significant regional differences in the carbon budget,and carbon emissions exhibited a core-periphery spatial pattern,with a high-value center at Beijing-Tianjin-Tangshan that gradually decreased as it moved outward.However,the spatial pattern of carbon absorption tended to be stable,showing an inverted“U-shaped”pattern.It was high in the east,north,and west,and was low in the middle and the south.(3)The carbon budget was consistent with the strategic positioning of the MFZ,and the optimized development zone and key development zone were the main pressure-bearing areas for carbon emissions,while the key ecological functional zone was the dominant zone of carbon absorption.The difference in the centralization index of carbon absorption among the functional zones was smaller than that in the centralization index of carbon emissions.(4)There were 53 payment areas,64 balanced areas,and 40 obtaining areas in the study area.Nine types of carbon compensation zones were finally formed in light of the strategic objectives of the MFZ,and directions and strategies for low-carbon development are proposed for each type.(5)It is important to strengthen research on the carbon balance and horizontal carbon compensation at a microscopic scale,enrich the theoretical framework of regional carbon compensation,integrate it into the carbon trading market,and explore diversified paths for achieving peak emissions and carbon neutrality. 展开更多
关键词 major functional zones(MFZ) carbon budget carbon compensation zoning spatial optimization Beijing-Tianjin-Hebei urban agglomeration(BTHUA)
原文传递
Model-based trajectory tracking control for an electrohydraulic lifting system with valve compensation strategy 被引量:3
2
作者 周华 侯交义 +1 位作者 赵勇刚 陈英龙 《Journal of Central South University》 SCIE EI CAS 2012年第11期3110-3117,共8页
The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical m... The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward. 展开更多
关键词 electrohydraulic system trajectory tracking control valve compensation dead zone compensation mobile machinery
下载PDF
New Dead⁃zone Compensation Approach for Proportional Flow Valve
3
作者 Qiang Wu Xingyu Ji +2 位作者 He Wang Huimin Hao Jiahai Huang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第1期45-56,共12页
To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spo... To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback. 展开更多
关键词 proportional flow valve flow dead⁃zone dead⁃zone compensation pressure drop
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部