There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid...Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been...A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap change...When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.展开更多
This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electro...This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electronics in micro-grid systems are presented.This paper also examines how micro-grids have a key role to play in the development of the smart grid.展开更多
Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and...Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and economy development. However, development pattern that excessively relies on the natural source is impossible to provide a sustainable development way for us. As a result, we should combine renewable energy with new energy technology as the aim of economy. It means that it is urgent to exploit new energy. Meanwhile, the ratio of energy waste cannot be ignored. How to decrease energy waste is also significant. Construction sector costs a lot of energy, which is mainly used for heating and refrigeration. In the new energy generation technology, thermal energy can be transformed to electricity with combination of BIPV and thermal energy storage technology. Photovoltaic generation has a great progress in the building construction. As a result, the thermal energy storage technology becomes the key link in the production chain. In this paper, feasibility of applying phase-change material (PCM) in the thermal energy storage will be analyzed. And analysis results are provided with a relative mathematical model.展开更多
The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind...The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind power generation and loss of load in generation deficit, we propose operation strategies for coordinating battery energy storage with wind power generation. The effects of the operation strategies on system reliability are evaluated by the developed computation model that represents the main aspects and operation limitations of the batteries. The performance evaluation of the power system is based on the composite reliability indices of loss of load probability(LOLP) and expected energy not supplied(EENS), which is calculated through sequential Monte Carlo simulation. Tests are performed by the developed model with a tutorial system consisting of five busbars and the IEEE RTS system. The results show that the use of large-scale batteries is an alternative to physically guarantee the wind power plants and to act as an operation reserve to reduce the risk of loss of load.展开更多
This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A ch...This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A chronological multiple state probability model of tidal power generation system(TPGS)considering both forced outage rate(FOR)of the TPGS and random nature of tidal current speed is developed.In the evaluation of FORs of TPGS and WPGS(wind power generation system),the delivered power related failure rates of power electronic converters for TPGS and WPGS are considered.A chronological power output model of battery energy storage system(BESS)is derived.A hybrid system of tidal and wind generation powers with a BESS is used to demonstrate the effectiveness of the presented method.In case studies,the effects of various parameters on the system reliability are investigated.展开更多
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage...Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.展开更多
The emergence of the energy self-sufficient home presents a new role for government taxation. Policymakers now face the challenge of reflecting this technological change in their decision-making and must assume a grea...The emergence of the energy self-sufficient home presents a new role for government taxation. Policymakers now face the challenge of reflecting this technological change in their decision-making and must assume a greater level of engagement. This paper proposes a number of original fiscal concepts for policymakers to implement in the support of micro-grid development. These are designed to optimise a sustainable transition away from the centralised energy system whilst creating shared value among stakeholders throughout the value chain. Concepts are based on residential micro-grid schemata in Switzerland and are applicable in other countries.展开更多
This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system s...This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.展开更多
Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configur...Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.展开更多
随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发...随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。展开更多
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.
基金supported by the National Natural Science Foundation of China(No.21878176)National Key Research and Development Program of China(No.2018YFA0902200)financially supported by the Imperial College President’s PhD Scholarship Scheme。
文摘Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
文摘A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金Supported by the Postdoctoral Science Foundation of China(No.2022M710039)。
文摘When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment.
基金funded by the ARC Linkage Grant LP100100618,Country Energy and the University of Wollongong
文摘This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electronics in micro-grid systems are presented.This paper also examines how micro-grids have a key role to play in the development of the smart grid.
文摘Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and economy development. However, development pattern that excessively relies on the natural source is impossible to provide a sustainable development way for us. As a result, we should combine renewable energy with new energy technology as the aim of economy. It means that it is urgent to exploit new energy. Meanwhile, the ratio of energy waste cannot be ignored. How to decrease energy waste is also significant. Construction sector costs a lot of energy, which is mainly used for heating and refrigeration. In the new energy generation technology, thermal energy can be transformed to electricity with combination of BIPV and thermal energy storage technology. Photovoltaic generation has a great progress in the building construction. As a result, the thermal energy storage technology becomes the key link in the production chain. In this paper, feasibility of applying phase-change material (PCM) in the thermal energy storage will be analyzed. And analysis results are provided with a relative mathematical model.
文摘The variability of wind power generation requires the allocation of a flexible energy reserve which is capable of compensating for possible imbalances between the load and generation. To reduce the variability of wind power generation and loss of load in generation deficit, we propose operation strategies for coordinating battery energy storage with wind power generation. The effects of the operation strategies on system reliability are evaluated by the developed computation model that represents the main aspects and operation limitations of the batteries. The performance evaluation of the power system is based on the composite reliability indices of loss of load probability(LOLP) and expected energy not supplied(EENS), which is calculated through sequential Monte Carlo simulation. Tests are performed by the developed model with a tutorial system consisting of five busbars and the IEEE RTS system. The results show that the use of large-scale batteries is an alternative to physically guarantee the wind power plants and to act as an operation reserve to reduce the risk of loss of load.
基金supported in part by the National “111” Project of China under Grant B08036China State Grid Science and Technology Project(SGCQDK00DJJS1500056)
文摘This paper presents a method for reliability evaluation of a hybrid generation system of wind and tidal powers with battery energy storage.Such a system may widely exist in coastal areas and islands in the future.A chronological multiple state probability model of tidal power generation system(TPGS)considering both forced outage rate(FOR)of the TPGS and random nature of tidal current speed is developed.In the evaluation of FORs of TPGS and WPGS(wind power generation system),the delivered power related failure rates of power electronic converters for TPGS and WPGS are considered.A chronological power output model of battery energy storage system(BESS)is derived.A hybrid system of tidal and wind generation powers with a BESS is used to demonstrate the effectiveness of the presented method.In case studies,the effects of various parameters on the system reliability are investigated.
基金supported by National Natural Science Foundation of China Key program(51937003)。
文摘Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.
文摘The emergence of the energy self-sufficient home presents a new role for government taxation. Policymakers now face the challenge of reflecting this technological change in their decision-making and must assume a greater level of engagement. This paper proposes a number of original fiscal concepts for policymakers to implement in the support of micro-grid development. These are designed to optimise a sustainable transition away from the centralised energy system whilst creating shared value among stakeholders throughout the value chain. Concepts are based on residential micro-grid schemata in Switzerland and are applicable in other countries.
基金funded by the China Energy Investment Cor-poration under the program“Simulation of energy storage application scenarios in China and research on development strategy of China En-ergy Investment Corporation”(Grant No.:GJNY-21-143).
文摘This study designs and proposes a method for evaluating the configuration of energy storage for integrated re-newable generation plants in the power spot market,which adopts a two-level optimization model of“system simulation+plant optimization”.The first step is“system simulation”which is using the power market simu-lation model to obtain the initial nodal marginal price and curtailment of the integrated renewable generation plant.The second step is“plant optimization”which is using the operation optimization model of the integrated renewable generation plant to optimize the charge-discharge operation of energy storage.In the third step,“sys-tem simulation”is conducted again,and the combined power of renewable and energy storage inside the plant is brought into the system model and simulated again for 8,760 h of power market year-round to quantify and compare the power generation and revenue of the integrated renewable generation plant after applying energy storage.In the case analysis of the provincial power spot market,an empirical analysis of a 1 GW wind-solar-storage integrated generation plant was conducted.The results show that the economic benefit of energy storage is approximately proportional to its capacity and that there is a slowdown in the growth of economic benefits when the capacity is too large.In the case that the investment benefit of energy storage only considers the in-come of electric energy-related incomes and does not consider the income of capacity mechanism and auxiliary services,the income of energy storage cannot fulfill the economic requirements of energy storage investment.
基金supported by National Natural Science Foundation of China(No.51107126 and No.512111046)the Key Projects in National Science and Technology Pillar Program(No.2011BAA07B07)+1 种基金the Beiing Nova Program(No.Z141101001814094)the Science and Technology Foundation of State Grid Corporation of China(No.DG71-14-032)
文摘Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.
文摘随着大量新能源的接入,使得多端柔性直流系统(modular multilevel converter based multi-terminal direct current, MMC-MTDC)故障特征愈加复杂,快速准确的故障识别与测距是亟需解决的关键难题之一。为此,提出了一种风-光-储-蓄互补发电站经柔性直流输电外送系统故障识别与测距方法。首先,搭建风-光-储-蓄互补发电站经柔直外送系统,在此基础上,提出了一种Teager能量算子能量熵的新方法,利用测量点正负极Teager能量算子能量熵的比值构建故障选极及区段识别判据。接着,针对已识别的故障线路,提出变分模态分解(variational mode decomposition, VMD)与Teager能量算子(teager energy operator, TEO)相结合的故障测距方法。最后,利用PSCAD/EMTDC进行仿真,结果表明所提识别方法可以准确判断故障所在线路,所提测距方法能在故障发生2 ms时间窗内实现故障测距,误差率不超过2.55%,并具有较高的耐过渡电阻能力。