A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
A 60 GHz phased array system for mm wave frequency in 5G is introduced and a 5 bit digitally controlled phase shifter in 40 nm CMOS technology is presented.In a phased array system,the signal to noise ratio(SNR)of the...A 60 GHz phased array system for mm wave frequency in 5G is introduced and a 5 bit digitally controlled phase shifter in 40 nm CMOS technology is presented.In a phased array system,the signal to noise ratio(SNR)of the receiver is improved with the beaming forming function.Therefore,the communication data rate and distance are improved accordingly.The phase shifter is the key component for achieving the beam forming function,and its resolution and power consumption are also very critical.In the second half of this paper,an analysis of phase shifter is introduced,and a 60 GHz 5 bit digitally controlled phase shifter in 40 nm complementary metal oxide semiconductor(CMOS)technology is presented.In this presented phase shifter,a hybrid structure is implemented for its advantage on lower phase deviation while keeping comparable loss.Meanwhile,this digitally controlled phase shifter is much more compact than other works.For all 32 states,the minimum phase error is 1.5°,and the maximum phase error is 6.8°.The measured insertion loss is-20.9±1 dB including pad loss at 60 GHz and the return loss is more than 10 dB over 57-64 GHz.The total chip size is 0.24 mm^2 with 0 mW DC power consumption.展开更多
探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应...探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应用。其次,讨论了动态功耗和静态功耗对电路的影响,提出相应的解决方法和优化措施。再次,从工艺调整和设计方法2个角度,详细介绍低功耗设计的方法。最后,结合具体的CMOS环形振荡器设计,展示了低功耗设计的实际应用和优势,为便携设备的高效、可靠运行提供了理论基础和技术支持。展开更多
针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息...针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息采集装置,对采集图像进行二值化处理、去噪操作和边缘检测后提取路径信息、进而准确地判别跑道的形状,为舵机和电机提供控制依据,以使小车平稳快速地行驶。同时,提出将行驶状态与赛道信息综合考虑的措施,并通过PID(Proportional Integral Differential)控制策略以及实验测试,实现了对各种典型跑道的优化处理,使高速行进中的智能车具有良好的转向调节能力和加减速响应能力。智能车可以在以白色为底面颜色,两边有黑色引导线的跑道上运行,克服了因单条引导线信息量少而引起的误识别问题。展开更多
为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。...为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。在宇宙环境中,卫星中的模拟CMOS集成电路存在CMOS半导体元器件阈值电压偏离、线性跨导减小、衬底的漏电流增加和转角1/f噪声幅值增加。所以提出了3种对模拟CMOS集成电路进行抗辐射加固的方法:1)抗辐射模拟CMOS集成电路的设计;2)抗辐射集成电路版图设计;3)单晶半导体硅膜(Silicon on Insulator,SOI)抗辐射工艺与加固设计。根据上面的设计方法研制了抗辐射加固模拟CMOS集成电路,可以取得较好的抗辐射效果。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
基金supported by the National Science Foundation of China (No. 61828401)
文摘A 60 GHz phased array system for mm wave frequency in 5G is introduced and a 5 bit digitally controlled phase shifter in 40 nm CMOS technology is presented.In a phased array system,the signal to noise ratio(SNR)of the receiver is improved with the beaming forming function.Therefore,the communication data rate and distance are improved accordingly.The phase shifter is the key component for achieving the beam forming function,and its resolution and power consumption are also very critical.In the second half of this paper,an analysis of phase shifter is introduced,and a 60 GHz 5 bit digitally controlled phase shifter in 40 nm complementary metal oxide semiconductor(CMOS)technology is presented.In this presented phase shifter,a hybrid structure is implemented for its advantage on lower phase deviation while keeping comparable loss.Meanwhile,this digitally controlled phase shifter is much more compact than other works.For all 32 states,the minimum phase error is 1.5°,and the maximum phase error is 6.8°.The measured insertion loss is-20.9±1 dB including pad loss at 60 GHz and the return loss is more than 10 dB over 57-64 GHz.The total chip size is 0.24 mm^2 with 0 mW DC power consumption.
文摘探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应用。其次,讨论了动态功耗和静态功耗对电路的影响,提出相应的解决方法和优化措施。再次,从工艺调整和设计方法2个角度,详细介绍低功耗设计的方法。最后,结合具体的CMOS环形振荡器设计,展示了低功耗设计的实际应用和优势,为便携设备的高效、可靠运行提供了理论基础和技术支持。
文摘针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息采集装置,对采集图像进行二值化处理、去噪操作和边缘检测后提取路径信息、进而准确地判别跑道的形状,为舵机和电机提供控制依据,以使小车平稳快速地行驶。同时,提出将行驶状态与赛道信息综合考虑的措施,并通过PID(Proportional Integral Differential)控制策略以及实验测试,实现了对各种典型跑道的优化处理,使高速行进中的智能车具有良好的转向调节能力和加减速响应能力。智能车可以在以白色为底面颜色,两边有黑色引导线的跑道上运行,克服了因单条引导线信息量少而引起的误识别问题。
文摘为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。在宇宙环境中,卫星中的模拟CMOS集成电路存在CMOS半导体元器件阈值电压偏离、线性跨导减小、衬底的漏电流增加和转角1/f噪声幅值增加。所以提出了3种对模拟CMOS集成电路进行抗辐射加固的方法:1)抗辐射模拟CMOS集成电路的设计;2)抗辐射集成电路版图设计;3)单晶半导体硅膜(Silicon on Insulator,SOI)抗辐射工艺与加固设计。根据上面的设计方法研制了抗辐射加固模拟CMOS集成电路,可以取得较好的抗辐射效果。