设G是一个图,P(G,λ)是G的色多项式.若P(G,λ)=P(H,λ),则称G和H是色等价的,简单地用G~H表示.令[G]={H|H~G}.若[G]={G},称G是色唯一的.用G=K(n1,n2,n3,n4)表示完全四部图且2 n1 n2 n3 n4,得到了[G] {K(x,y,z,w)-S|x+y+z+w=n1+n2+n3+n4...设G是一个图,P(G,λ)是G的色多项式.若P(G,λ)=P(H,λ),则称G和H是色等价的,简单地用G~H表示.令[G]={H|H~G}.若[G]={G},称G是色唯一的.用G=K(n1,n2,n3,n4)表示完全四部图且2 n1 n2 n3 n4,得到了[G] {K(x,y,z,w)-S|x+y+z+w=n1+n2+n3+n4,1 x y z w n4-1,或1 x y z n3-1和w=n4}∪{G},其中S是K(x,y,z,w)的某s条边组成的集合且K(x,y,z,w)-S表示从K(x,y,z,w)中删去S中所有边得到的图.从而证明了当n k+2,k 2时,K(n-k,n,n,n)是色唯一的.展开更多
文摘设G是一个图,P(G,λ)是G的色多项式.若P(G,λ)=P(H,λ),则称G和H是色等价的,简单地用G~H表示.令[G]={H|H~G}.若[G]={G},称G是色唯一的.用G=K(n1,n2,n3,n4)表示完全四部图且2 n1 n2 n3 n4,得到了[G] {K(x,y,z,w)-S|x+y+z+w=n1+n2+n3+n4,1 x y z w n4-1,或1 x y z n3-1和w=n4}∪{G},其中S是K(x,y,z,w)的某s条边组成的集合且K(x,y,z,w)-S表示从K(x,y,z,w)中删去S中所有边得到的图.从而证明了当n k+2,k 2时,K(n-k,n,n,n)是色唯一的.