期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
1
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales runoff
下载PDF
A hybrid approach based on complete ensemble empirical mode decomposition with adaptive noise for multi-step-ahead solar radiation forecasting 被引量:1
2
作者 Khaled Ferkous Tayeb Boulmaiz +1 位作者 Fahd Abdelmouiz Ziari Belgacem Bekkar 《Clean Energy》 EI 2022年第5期705-715,共11页
Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stati... Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system. 展开更多
关键词 hybrid models complete ensemble empirical mode decomposition with adaptive noise Gaussian process regression prediction solar measurements Ghardaia site
原文传递
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:3
3
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) Generative adversarial interpolation network(GAIN)
下载PDF
基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究 被引量:2
4
作者 夏焰坤 李欣洋 +1 位作者 任俊杰 寇坚强 《振动与冲击》 EI CSCD 北大核心 2024年第5期72-81,共10页
由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(co... 由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与希尔伯特变换(Hilbert transform, HT)结合,构成一种CEEMDAN-HT非线性信号分析方法,并将其应用于提取振动信号故障特征。首先,利用CEEMDAN算法分解振动信号,得到一系列本征模态函数(intrinsic mode function, IMF),并将主元分析中的方差贡献率用于识别包含故障特征信息的IMF。其次,使用HT对方差贡献率较高的IMF进行分析,并以三维联合时频图呈现时间、瞬时频率与幅值,得到了主要故障特征。最后,使用ANSYS有限元软件建立了电机短路故障模型,并搭建了短路故障试验平台,通过对比有限元仿真结果与试验结果,对提出的方法进行了有效性和准确性验证。 展开更多
关键词 永磁同步电机(permanent magnet synchronous motor PMSM) 振动信号 自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise CEEMDAN) 特征提取 希尔伯特变换(Hilbert transform HT)
下载PDF
Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction:case study of the coastal waters of Beihai,China
5
作者 Chongxuan Xu Ying Chen +2 位作者 Xueliang Zhao Wenyang Song Xiao Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期97-107,共11页
Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environme... Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators. 展开更多
关键词 seawater pH prediction Bi-gated recurrent neural(GRU)model phase space reconstruction attention mechanism improved complete ensemble empirical mode decomposition with adaptive noise
下载PDF
A novel feature extraction method for ship-radiated noise 被引量:4
6
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise Feature extraction Classification and recognition
下载PDF
Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting Based on Time Series Decomposition and Gated Recurrent Unit 被引量:3
7
作者 Changtong Wang Zhaohua Liu +2 位作者 Hualiang Wei Lei Chen Hongqiang Zhang 《Complex System Modeling and Simulation》 2021年第4期308-321,共14页
Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed du... Accurate wind speed prediction has been becoming an indispensable technology in system security,wind energy utilization,and power grid dispatching in recent years.However,it is an arduous task to predict wind speed due to its variable and random characteristics.For the objective to enhance the performance of forecasting short-term wind speed,this work puts forward a hybrid deep learning model mixing time series decomposition algorithm and gated recurrent unit(GRU).The time series decomposition algorithm combines the following two parts:(1)the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),and(2)wavelet packet decomposition(WPD).Firstly,the normalized wind speed time series(WSTS)are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal.The WPD algorithm conducts the second-order decomposition to the first component that contains complex and high frequency signal of raw WSTS.Finally,GRU networks are established for all the relevant components of the signals,and the predicted wind speeds are obtained by superimposing the prediction of each component.Results from two case studies,adopting wind data from laboratory and wind farm,respectively,suggest that the related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm,and the accuracy of short-time wind speed prediction can be heightened significantly mixing the time series decomposition algorithm and GRU networks. 展开更多
关键词 deep learning complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) gated recurrent unit(GRU) short term wavelet packet decomposition wind speed prediction
原文传递
一种基于CEEMDAN-改进小波阈值的OTDR信号去噪算法 被引量:5
8
作者 罗惠中 刘偲嘉 +4 位作者 甘育娇 李妮 姜海明 朱铮涛 谢康 《光电子.激光》 CAS CSCD 北大核心 2022年第3期241-247,共7页
为了解决光时域反射仪(optical time domain reflectometer,OTDR)中背向散射信号受噪声干扰严重问题,本文提出了一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN... 为了解决光时域反射仪(optical time domain reflectometer,OTDR)中背向散射信号受噪声干扰严重问题,本文提出了一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进小波阈值的OTDR信号去噪算法,利用CEEMDAN分解算法具有的抗模态混叠现象和降低重构误差等优点,将信号分解为若干IMF分量,根据相关系数的分析方法,找到噪声占主导的本征模态函数(intrinsic mode function,IMF)分量和信号占主导的IMF分量的临界点,去除噪声占主导的IMF分量,并将改进的小波阈值去噪方法对信号占主导的IMF分量进行去噪,最后重构信号。结果表明,本文提出的方法与传统的硬阈值方法、CEEMDAN-硬阈值方法和改进的小波阈值方法相比,能更好地抑制噪声,并达到更好的去噪效果,突显OTDR事件特征,更易于事件的检测。 展开更多
关键词 (optical time domain reflectometer OTDR) (complete ensemble empirical mode decomposition with adaptive noise CEEMDAN) 小波阈值去噪 相关系数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部