According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under t...According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rssler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012)the National Natural Science Foundation of China (Grant Nos. 11271146 and 61070238)the Science and Technology Program of Wuhan (Grant No. 20130105010117)
文摘According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rssler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.