For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex deg...For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.展开更多
Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues...Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In 2014, Yang and Wang gave a sufficient and necessary condition for complete r-partite graphs K_(p1,p2,···,pr)=K_(a1·p1,a2·p2,···,as···ps) to be distance integral and obtained such distance integral graphs with s = 1, 2, 3, 4. However distance integral complete multipartite graphs K_(a1·p1,a2·p2,···,as·ps) with s > 4 have not been found. In this paper, we find and construct some infinite classes of these distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with s = 5, 6. The problem of the existence of such distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with arbitrarily large number s remains open.展开更多
The interval graph completion problem of a graph G includes two class problems: the profile problem and the pathwidth problem, denoted as P(G) and PW(G) respectively, where the profile problem is to find an inter...The interval graph completion problem of a graph G includes two class problems: the profile problem and the pathwidth problem, denoted as P(G) and PW(G) respectively, where the profile problem is to find an interval supergraph with the smallest possible number of edges; the pathwidth problem is to find an interval supergraph with the smallest possible cliquesize. These two class problems have important applications to numerical algebra, VLSI- layout and algorithm graph theory respectively; And they are known to be NP-complete for general graphs. Some classes of special graphs have been investigated in the literatures. In this paper the exact solutions of the profile and the pathwidth of the complete multipartite graph Kn1,n2,...nr (r≥ 2) are determined.展开更多
A graph G is called to be chromatic choosable if its choice number is equal to its chromatic number. In 2002, Ohba conjectured that every graph G with 2Х(G) + 1 or fewer vertices is chromatic choosable. It is easy...A graph G is called to be chromatic choosable if its choice number is equal to its chromatic number. In 2002, Ohba conjectured that every graph G with 2Х(G) + 1 or fewer vertices is chromatic choosable. It is easy to see that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. But at present only for some special cases of complete multipartite graphs, Ohba's conjecture have been verified. In this paper we show that graphs K6,3,2*(k-6),1*4 (k ≥ 6) is chromatic choosable and hence Ohba's conjecture is true for the graphs K6,3,2*(k-6),1*4 and all complete k-partite subgraphs of them.展开更多
For a simple undirected graph G, denote by λ(G) the (0, 1)-adjacency matrix of G. Let the matrix S(G) = J-I-2A(G) be its Seidel matrix, and let SG(A) = det(AI-S(G)) be its Seidel characteristic polynomi...For a simple undirected graph G, denote by λ(G) the (0, 1)-adjacency matrix of G. Let the matrix S(G) = J-I-2A(G) be its Seidel matrix, and let SG(A) = det(AI-S(G)) be its Seidel characteristic polynomial, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. If all eigenvalues of SG(λ) are integral, then the graph G is called S-integral, In this paper, our main goal is to investigate the eigenvalues of SG(A) for the complete multipartite graphs G = Kn1,n2,...,n,. A necessary and sufficient condition for the complete tripartite graphs Km,n,t and the complete multipartite graphs Km,.... m,n,...,n to be S-integral is given, respectively.展开更多
The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, ...The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.展开更多
We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero...We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.展开更多
Let G be a simple graph with 2n vertices and a perfect matching.The forcing number f(G,M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G.A...Let G be a simple graph with 2n vertices and a perfect matching.The forcing number f(G,M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G.Among all perfect matchings M of G,the minimum and maximum values of f(G,M) are called the minimum and maximum forcing numbers of G,denoted by f(G) and F(G),respectively.Then f(G)≤F(G) ≤n-1.Che and Chen(2011) proposed an open problem:how to characterize the graphs G with f(G)=n-1.Later they showed that for a bipartite graph G,f(G)=n-1 if and only if G is complete bipartite graph K_(n,n).In this paper,we completely solve the problem of Che and Chen,and show that f(G)=n-1 if and only if G is a complete multipartite graph or a graph obtained from complete bipartite graph K_(n,n) by adding arbitrary edges in one partite set.For all graphs G with F(G)=n-1,we prove that the forcing spectrum of each such graph G forms an integer interval by matching 2-switches and the minimum forcing numbers of all such graphs G form an integer interval from [n/2] to n-1.展开更多
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that la(G) = [△(G)+1/2] for any regular graph G. In this paper, we...The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that la(G) = [△(G)+1/2] for any regular graph G. In this paper, we prove the conjecture for some composition graphs, in particular, for complete multipartite graphs.展开更多
基金Supported by the NSFC(60863006)Supported by the NCET(-06-0912)Supported by the Science-Technology Foundation for Middle-aged and Yong Scientist of Qinghai University(2011-QGY-8)
文摘For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2014173)
文摘Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In 2014, Yang and Wang gave a sufficient and necessary condition for complete r-partite graphs K_(p1,p2,···,pr)=K_(a1·p1,a2·p2,···,as···ps) to be distance integral and obtained such distance integral graphs with s = 1, 2, 3, 4. However distance integral complete multipartite graphs K_(a1·p1,a2·p2,···,as·ps) with s > 4 have not been found. In this paper, we find and construct some infinite classes of these distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with s = 5, 6. The problem of the existence of such distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with arbitrarily large number s remains open.
基金Supported by the Natural Science Foundation of Henan Province(082300460190) Sponsored by Program for Science and Technology Innovation Talents in Universities of Henan Province.
文摘The interval graph completion problem of a graph G includes two class problems: the profile problem and the pathwidth problem, denoted as P(G) and PW(G) respectively, where the profile problem is to find an interval supergraph with the smallest possible number of edges; the pathwidth problem is to find an interval supergraph with the smallest possible cliquesize. These two class problems have important applications to numerical algebra, VLSI- layout and algorithm graph theory respectively; And they are known to be NP-complete for general graphs. Some classes of special graphs have been investigated in the literatures. In this paper the exact solutions of the profile and the pathwidth of the complete multipartite graph Kn1,n2,...nr (r≥ 2) are determined.
基金the Science Foundation of the Education Department of Hebei Province (2005108).
文摘A graph G is called to be chromatic choosable if its choice number is equal to its chromatic number. In 2002, Ohba conjectured that every graph G with 2Х(G) + 1 or fewer vertices is chromatic choosable. It is easy to see that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. But at present only for some special cases of complete multipartite graphs, Ohba's conjecture have been verified. In this paper we show that graphs K6,3,2*(k-6),1*4 (k ≥ 6) is chromatic choosable and hence Ohba's conjecture is true for the graphs K6,3,2*(k-6),1*4 and all complete k-partite subgraphs of them.
基金Supported by the National Natural Science Foundation of China (No.60863006)Program for New Century Excellent Talents in University (No.06-0912)
文摘For a simple undirected graph G, denote by λ(G) the (0, 1)-adjacency matrix of G. Let the matrix S(G) = J-I-2A(G) be its Seidel matrix, and let SG(A) = det(AI-S(G)) be its Seidel characteristic polynomial, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. If all eigenvalues of SG(λ) are integral, then the graph G is called S-integral, In this paper, our main goal is to investigate the eigenvalues of SG(A) for the complete multipartite graphs G = Kn1,n2,...,n,. A necessary and sufficient condition for the complete tripartite graphs Km,n,t and the complete multipartite graphs Km,.... m,n,...,n to be S-integral is given, respectively.
文摘The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.
文摘We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.
基金Supported by National Natural Science Foundation of China (Grant No. 12271229)Gansu Provincial Department of Education:Youth Doctoral fund project (Grant No. 2021QB-090)。
文摘Let G be a simple graph with 2n vertices and a perfect matching.The forcing number f(G,M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G.Among all perfect matchings M of G,the minimum and maximum values of f(G,M) are called the minimum and maximum forcing numbers of G,denoted by f(G) and F(G),respectively.Then f(G)≤F(G) ≤n-1.Che and Chen(2011) proposed an open problem:how to characterize the graphs G with f(G)=n-1.Later they showed that for a bipartite graph G,f(G)=n-1 if and only if G is complete bipartite graph K_(n,n).In this paper,we completely solve the problem of Che and Chen,and show that f(G)=n-1 if and only if G is a complete multipartite graph or a graph obtained from complete bipartite graph K_(n,n) by adding arbitrary edges in one partite set.For all graphs G with F(G)=n-1,we prove that the forcing spectrum of each such graph G forms an integer interval by matching 2-switches and the minimum forcing numbers of all such graphs G form an integer interval from [n/2] to n-1.
基金This work is partially supported by National Natural Science foundation of China Doctoral foundation of the Education Committee of China.
文摘The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that la(G) = [△(G)+1/2] for any regular graph G. In this paper, we prove the conjecture for some composition graphs, in particular, for complete multipartite graphs.