Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos...The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting.展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the...Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.展开更多
In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra...In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.展开更多
Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stati...Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.展开更多
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
In recent study the bank of real square integrable functions that have nonlinear phases and admit a well-behaved Hilbert transform has been constructed for adaptive representation of nonlinear signals. We first s...In recent study the bank of real square integrable functions that have nonlinear phases and admit a well-behaved Hilbert transform has been constructed for adaptive representation of nonlinear signals. We first show in this paper that the available basic functions are adequate for establishing an ideal adaptive decomposition algorithm. However, we also point out that the best approximation algorithm, which is a common strategy in decomposing a function into a sum of functions in a prescribed class of basis functions, should not be considered as a candidate for the ideal algorithm.展开更多
Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environme...Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.展开更多
Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generali...Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147.展开更多
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金supported by the National Key R&D Program of China(Grant No.2018YFC0406501)Outstanding Young Talent Research Fund of Zhengzhou Uni-versity(Grant No.1521323002)+2 种基金Program for Innovative Talents(in Science and Technology)at University of Henan Province(Grant No.18HASTIT014)State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(Grant No.HESS-1717)Foundation for University Youth Key Teacher of Henan Province(Grant No.2017GGJS006).
文摘The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting.
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
基金supported by the National Natural Science Foundation of China(No.41274137)the National Engineering Laboratory of Offshore Oil Exploration
文摘Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.
基金Project(10772061) supported by the National Natural Science Foundation of ChinaProject(A200907) supported by the Natural Science Foundation of Heilongjiang Province, China Project(20092322120001) supported by the PhD Programs Foundations of Ministry of Education of China
文摘In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.
文摘Accurate measurements of solar radiation are required to ensure that power and energy systems continue to function effectively and securely.On the other hand,estimating it is extremely challenging due to the non-stationary behaviour and randomness of its components.In this research,a novel hybrid forecasting model,namely complete ensemble empirical mode decomposition with adaptive noise-Gaussian process regression(CEEMDAN-GPR),has been developed for daily global solar radiation prediction.The non-stationary global solar radiation series is transformed by CEEMDAN into regular subsets.After that,the GPR model uses these subsets as inputs to perform its prediction.According to the results of this research,the performance of the developed hybrid model is superior to two widely used hybrid models for solar radiation forecasting,namely wavelet-GPR and wavelet packet-GPR,in terms of mean square error,root mean square error,coefficient of determination and relative root mean square error values,which reached 3.23 MJ/m^(2)/day,1.80 MJ/m^(2)/day,95.56%,and 8.80%,respectively(for one-step forward forecasting).The proposed hybrid model can be used to ensure the safe and reliable operation of the electricity system.
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
基金The NSF(11426113)of Chinathe Science and Technology Research Project(2014161,2014163)of Jilin Provincial Department of Education of Chinathe Project(20160520110JH)of Science and Technology Development Plan for Jilin Provincial
文摘In recent study the bank of real square integrable functions that have nonlinear phases and admit a well-behaved Hilbert transform has been constructed for adaptive representation of nonlinear signals. We first show in this paper that the available basic functions are adequate for establishing an ideal adaptive decomposition algorithm. However, we also point out that the best approximation algorithm, which is a common strategy in decomposing a function into a sum of functions in a prescribed class of basis functions, should not be considered as a candidate for the ideal algorithm.
基金The National Natural Science Foundation of China under contract No.62275228the S&T Program of Hebei under contract Nos 19273901D and 20373301Dthe Hebei Natural Science Foundation under contract No.F2020203066.
文摘Marine life is very sensitive to changes in pH.Even slight changes can cause ecosystems to collapse.Therefore,understanding the future pH of seawater is of great significance for the protection of the marine environment.At present,the monitoring method of seawater pH has been matured.However,how to accurately predict future changes has been lacking effective solutions.Based on this,the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction(ICPBGA)is proposed to achieve seawater pH prediction.To verify the validity of this model,pH data of two monitoring sites in the coastal sea area of Beihai,China are selected to verify the effect.At the same time,the ICPBGA model is compared with other excellent models for predicting chaotic time series,and root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R2)are used as performance evaluation indicators.The R2 of the ICPBGA model at Sites 1 and 2 are above 0.9,and the prediction errors are also the smallest.The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect.The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.
文摘Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147.