In this paper,we obtain a necessary and sufficient condition for a U(n)-invariant complex Finsler metric F on domains in C^(n) to be strongly convex,which also makes it possible to investigate the relationship between...In this paper,we obtain a necessary and sufficient condition for a U(n)-invariant complex Finsler metric F on domains in C^(n) to be strongly convex,which also makes it possible to investigate the relationship between real and complex Finsler geometries via concrete and computable examples.We prove a rigid theorem which states that a U(n)-invariant strongly convex complex Finsler metric F is a real Berwald metric if and only if F comes from a U(n)-invariant Hermitian metric.We give a characterization of U(n)-invariant weakly complex Berwald metrics with vanishing holomorphic sectional curvature and obtain an explicit formula for holomorphic curvature of the U(n)-invariant strongly pseudoconvex complex Finsler metric.Finally,we prove that the real geodesics of some U(n)-invariant complex Finsler metric restricted on the unit sphere S^(2n-1)■C^(n) share a specific property as that of the complex Wrona metric on C^(n).展开更多
Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler man- ifolds. The doubly wraped product complex Finsler manifold (f2 M1 x h M2, F) of (M1, F1) and (M2, F2) is the product manifold M1 x ...Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler man- ifolds. The doubly wraped product complex Finsler manifold (f2 M1 x h M2, F) of (M1, F1) and (M2, F2) is the product manifold M1 x M2 endowed with the warped product complex 2 2 Finsler metric F2 = f2F1 + fl F2, where fl and f2 are positive smooth functions on M1 and M2, respectively. In this paper, the most often used complex Finsler connections, holomorphic curvature, Ricci scalar curvature, and real geodesics of the DWP-complex Finsler manifold are derived in terms of the corresponding objects of its components. Necessary and sufficient conditions for the DWP-complex Finsler manifold to be K/ihler Finsler (resp., weakly K/ihler Finsler, complex Berwald, weakly complex Berwald, complex Landsberg) manifold are ob- tained, respectively. It is proved that if (M1, F1) and (M2,F2) are projectively flat, then the DWP-complex Finsler manifold is projectively flat if and only if fl and f2 are positive constants.展开更多
In this paper,we give a necessary and sucient condition for a strongly pseudoconvex complex Finsler metric to be locally conformal pseudo-Kahler Finsler.As an application,we nd any complete strongly convex and local...In this paper,we give a necessary and sucient condition for a strongly pseudoconvex complex Finsler metric to be locally conformal pseudo-Kahler Finsler.As an application,we nd any complete strongly convex and locally conformal pseudo-Kahler Finsler manifold,which is simply connected or whose fundamental group contains elements of nite order only,can be given a Kahler metric.展开更多
In this paper, the Kahler conditions of the Chern-Finsler connection in complex Finsler geometry are studied, and it is proved that Kahler Finsler metrics are actually strongly Kahler.
In this paper, the Laplacian on the holomorphic tangent bundle T 1,0 M of a complex manifold M endowed with a strongly pseudoconvex complex Finsler metric is defined and its explicit expression is obtained by using th...In this paper, the Laplacian on the holomorphic tangent bundle T 1,0 M of a complex manifold M endowed with a strongly pseudoconvex complex Finsler metric is defined and its explicit expression is obtained by using the Chern Finsler connection associated with (M, F ). Utilizing the initiated "Bochner technique", a vanishing theorem for vector fields on the holomorphic tangent bundle T 1,0 M is obtained.展开更多
In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-...In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.展开更多
Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result toget...Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result together with Zhong(2011) implies that among the strongly convex weakly Kahler Finsler metrics there does not exist unicorn metric in the sense of Bao(2007). We also give an explicit example of strongly convex Kahler Finsler metric which is simultaneously a complex Berwald metric, a complex Landsberg metric,a real Berwald metric, and a real Landsberg metric.展开更多
Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let M be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric F. L...Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let M be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric F. Let D be the complex Rund connection associated with (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection on (M, F) and the holomorphic curvature of the intrinsic complex Rund connection ~* on (M, F) coincide; (b) the holomorphic curvature of ~* does not exceed the holomorphic curvature of D; (c) (M, F) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (M, F) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (M, F).展开更多
基金supported by National Natural Science Foundation of China(Grant No.11671330)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Scientific Research Fund Program for Young Scholars of Xinyang Normal University(Grant No.2017-QN-029)。
文摘In this paper,we obtain a necessary and sufficient condition for a U(n)-invariant complex Finsler metric F on domains in C^(n) to be strongly convex,which also makes it possible to investigate the relationship between real and complex Finsler geometries via concrete and computable examples.We prove a rigid theorem which states that a U(n)-invariant strongly convex complex Finsler metric F is a real Berwald metric if and only if F comes from a U(n)-invariant Hermitian metric.We give a characterization of U(n)-invariant weakly complex Berwald metrics with vanishing holomorphic sectional curvature and obtain an explicit formula for holomorphic curvature of the U(n)-invariant strongly pseudoconvex complex Finsler metric.Finally,we prove that the real geodesics of some U(n)-invariant complex Finsler metric restricted on the unit sphere S^(2n-1)■C^(n) share a specific property as that of the complex Wrona metric on C^(n).
基金supported by Program for New Century Excellent Talents in University(NCET-13-0510)National Natural Science Foundation of China(11271304,11571288,11461064)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholar(2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler man- ifolds. The doubly wraped product complex Finsler manifold (f2 M1 x h M2, F) of (M1, F1) and (M2, F2) is the product manifold M1 x M2 endowed with the warped product complex 2 2 Finsler metric F2 = f2F1 + fl F2, where fl and f2 are positive smooth functions on M1 and M2, respectively. In this paper, the most often used complex Finsler connections, holomorphic curvature, Ricci scalar curvature, and real geodesics of the DWP-complex Finsler manifold are derived in terms of the corresponding objects of its components. Necessary and sufficient conditions for the DWP-complex Finsler manifold to be K/ihler Finsler (resp., weakly K/ihler Finsler, complex Berwald, weakly complex Berwald, complex Landsberg) manifold are ob- tained, respectively. It is proved that if (M1, F1) and (M2,F2) are projectively flat, then the DWP-complex Finsler manifold is projectively flat if and only if fl and f2 are positive constants.
基金Supported by the National Natural Science Foundation of China(Grant No.12001165)Postdoctoral Research Foundation of China(Grant No.2019M652513)Postdoctoral Research Foundation of Henan Province(Grant No.19030050).
文摘In this paper,we give a necessary and sucient condition for a strongly pseudoconvex complex Finsler metric to be locally conformal pseudo-Kahler Finsler.As an application,we nd any complete strongly convex and locally conformal pseudo-Kahler Finsler manifold,which is simply connected or whose fundamental group contains elements of nite order only,can be given a Kahler metric.
基金Project supported by the National Natural Science Foundation of China (No. 10571154)
文摘In this paper, the Kahler conditions of the Chern-Finsler connection in complex Finsler geometry are studied, and it is proved that Kahler Finsler metrics are actually strongly Kahler.
基金Project Supported by the National Natural Science Foundation of China (Nos. 10871145, 10771174)the Doctoral Program Foundation of the Ministry of Education of China (No. 2009007Q110053)
文摘In this paper, the Laplacian on the holomorphic tangent bundle T 1,0 M of a complex manifold M endowed with a strongly pseudoconvex complex Finsler metric is defined and its explicit expression is obtained by using the Chern Finsler connection associated with (M, F ). Utilizing the initiated "Bochner technique", a vanishing theorem for vector fields on the holomorphic tangent bundle T 1,0 M is obtained.
基金supported by the National Natural Science Foundation of China(Nos.11271304,11171277)the Program for New Century Excellent Talents in University(No.NCET-13-0510)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholars(No.2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.
基金supported by Program for New Century Excellent Talents in University (Grant No. NCET-13-0510)National Natural Science Foundation of China(Grant Nos. 11271304,10971170, 11171277,11571288,11461064 and 11671330)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholar (Grant No.2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Under the assumption that' is a strongly convex weakly Khler Finsler metric on a complex manifold M, we prove that F is a weakly complex Berwald metric if and only if F is a real Landsberg metric.This result together with Zhong(2011) implies that among the strongly convex weakly Kahler Finsler metrics there does not exist unicorn metric in the sense of Bao(2007). We also give an explicit example of strongly convex Kahler Finsler metric which is simultaneously a complex Berwald metric, a complex Landsberg metric,a real Berwald metric, and a real Landsberg metric.
基金supported by the Program for New Century Excellent Talents in Fujian Province, National Natural Science Foundation of China (Grant No. 10601040)Tian Yuan Foundation of China(Grant No. 10526033)China Postdoctoral Science Foundation (Grant No. 2005038639)
文摘Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let M be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric F. Let D be the complex Rund connection associated with (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection on (M, F) and the holomorphic curvature of the intrinsic complex Rund connection ~* on (M, F) coincide; (b) the holomorphic curvature of ~* does not exceed the holomorphic curvature of D; (c) (M, F) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (M, F) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (M, F).