期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations
1
作者 Haoyang LI Weijian LIU Yuhong DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1597-1612,共16页
Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows... Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed.The mesh layout and the detailed rescaling procedure are also introduced.Direct numerical simulations(DNSs)for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity(D3Q19)multiple-relaxation-time(MRT)lattice Boltzmann method(LBM)to validate the accuracy,adaptability,and computational performance of the present rescaling algorithm.The results,which are consistent with the previous DNS studies based on the finite difference method and the LBM,demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries.The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency. 展开更多
关键词 slattice Boltzmann method(LBM) direct numerical simulation(DNS) rescaling algorithm complex configuration
下载PDF
Comparisons and applications of numerical simulation methods for predicting aerodynamic heating around complex configurations 被引量:1
2
作者 Jin-Ling Luo Hong-Lin Kang +1 位作者 Jian Li Wu-Ye Dai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期339-345,共7页
Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods o... Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods on predicting heat flux in engineering applications. For some typical cases provided with detailed experimental data,four spatial schemes and four turbulence models were adopted to calculate surface heat flux. By analyzing and comparing,some inuencing regularities of numerical schemes and turbulence models on calculating heat flux had been acquired. It is clear that AUSM+-up scheme with rapid compressibilitymodified high Reynolds number k鈥撓?model should be appropriate for calculating heat flux. The numerical methods selected as preference above were applied to calculate the heat flux of a 3-D complex geometry in high speed turbulent flows. The results indicated that numerical simulation can capture the complex flow phenomena and reveal the mechanism of aerodynamic heating. Especially,the numerical result of the heat flux at the stagnation point of the wedge was well in agreement with the prediction of Kemp鈥揜iddel formula,and the surface heat flux distribution was consistent with experiment results,which implied that numerical simulation can be introduced to predict heat flux in engineering applications. 展开更多
关键词 Aerodynamic heating . complex configurations . Numerical simulation
下载PDF
Monte-Carlo Simulation of Response Functions for Natural Gamma-Rays in LaBr_3 Detector System with Complex Borehole Configurations
3
作者 吴永鹏 汤彬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第6期481-487,共7页
Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications... Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation. 展开更多
关键词 LaBr3(Ce) detector complex borehole configurations detector response function Monte-Carlo simulation
下载PDF
High-Order and High Accurate CFD Methods and Their Applications for Complex Grid Problems 被引量:9
4
作者 Xiaogang Deng Meiliang Mao +2 位作者 Guohua Tu Hanxin Zhang Yifeng Zhang 《Communications in Computational Physics》 SCIE 2012年第4期1081-1102,共22页
The purpose of this article is to summarize our recent progress in high-order and high accurate CFD methods for flow problems with complex grids as well as to discuss the engineering prospects in using these methods.D... The purpose of this article is to summarize our recent progress in high-order and high accurate CFD methods for flow problems with complex grids as well as to discuss the engineering prospects in using these methods.Despite the rapid development of high-order algorithms in CFD,the applications of high-order and high accurate methods on complex configurations are still limited.One of the main reasons which hinder the widely applications of thesemethods is the complexity of grids.Many aspects which can be neglected for low-order schemes must be treated carefully for high-order ones when the configurations are complex.In order to implement highorder finite difference schemes on complex multi-block grids,the geometric conservation lawand block-interface conditions are discussed.A conservativemetricmethod is applied to calculate the grid derivatives,and a characteristic-based interface condition is employed to fulfil high-order multi-block computing.The fifth-order WCNS-E-5 proposed by Deng[9,10]is applied to simulate flows with complex grids,including a double-delta wing,a transonic airplane configuration,and a hypersonic X-38 configuration.The results in this paper and the references show pleasant prospects in engineering-oriented applications of high-order schemes. 展开更多
关键词 WCNS complex configurations geometric conservation law conservative metric methods characteristic-based interface conditions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部