An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are in...An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.展开更多
A deductive database approach for complex objects reasoning is proposed,which is characterized by handling predicates nesting in terms of mapping hierarchically structured rules and facts to a flattened Horn-clause im...A deductive database approach for complex objects reasoning is proposed,which is characterized by handling predicates nesting in terms of mapping hierarchically structured rules and facts to a flattened Horn-clause implementation scheme.展开更多
基金supported by the National Natural Science Foundation of China under grant nos.61772091,61802035,61962006,61962038,U1802271,U2001212,and 62072311the Sichuan Science and Technology Program under grant nos.2021JDJQ0021 and 22ZDYF2680+7 种基金the CCF‐Huawei Database System Innovation Research Plan under grant no.CCF‐HuaweiDBIR2020004ADigital Media Art,Key Laboratory of Sichuan Province,Sichuan Conservatory of Music,Chengdu,China under grant no.21DMAKL02the Chengdu Major Science and Technology Innovation Project under grant no.2021‐YF08‐00156‐GXthe Chengdu Technology Innovation and Research and Development Project under grant no.2021‐YF05‐00491‐SNthe Natural Science Foundation of Guangxi under grant no.2018GXNSFDA138005the Guangdong Basic and Applied Basic Research Foundation under grant no.2020B1515120028the Science and Technology Innovation Seedling Project of Sichuan Province under grant no 2021006the College Student Innovation and Entrepreneurship Training Program of Chengdu University of Information Technology under grant nos.202110621179 and 202110621186.
文摘An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.
文摘A deductive database approach for complex objects reasoning is proposed,which is characterized by handling predicates nesting in terms of mapping hierarchically structured rules and facts to a flattened Horn-clause implementation scheme.