期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids
1
作者 M.R. Hossen S.A. Ema A.A. Mamun 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期67-70,共4页
Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, col- lisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed o... Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, col- lisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed of inertial and viscous cold electron fluids, nonextensive distributed hot electrons, Maxwellian ions, and negatively charged stationary dust grains. The standard reductive perturbation technique is used to derive the nonlinear dynamical equations, that is, the nonplanar Burgers equation and the nonplanar further Burgers equation. They are also numerically analyzed to investigate the basic features of shock waves and double layers (DLs). It is observed that the roles of the viscous cold electron fluids, nonextensivity of hot electrons, and other plasma parameters in this investigation have significantly modified the basic features (such as, polarity, amplitude and width) of the nonplanar DEA shock waves and DLs. It is also observed that the strength of the shock is maximal for the spherical geometry, intermediate for cylindrical geometry, while it is minimal for the planar geometry. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas. 展开更多
关键词 in on IS AS IT of Nonlinear dynamics in a Nonextensive complex Plasma with Viscous Electron fluids with
下载PDF
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
2
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT Computational fluid dynamics (CFD) complex terrain wind field fine-scale simulation
下载PDF
CFD simulation of an industrial hydrocyclone with Eulerian-Eulerian approach: A case study 被引量:13
3
作者 Safa Raziyeh Soltani Goharrizi Ataallah 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期643-648,共6页
In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copp... In the present study, a three-dimensional computational fluid dynamics simulation together with experimental field measurements was applied to optimize the performance of an industrial hydrocyclone at Sarcheshmeh copper complex. In the simulation, the Eulerian–Eulerian approach was used for solid and liquid phases, the latter being water. In this approach, nine continuous phases were considered for the solid particles with different sizes and one continuous phase for water. The continuity and momentum equations with inclusion of buoyancy and drag forces were solved by the finite volume method. The k–e RNG turbulence model was used for modeling of turbulency. There was a good agreement between the simulation results and the experimental data. After validation of the model accuracy, the effect of inlet solid percentage, pulp inlet velocity, rod inserting in the middle of the hydrocyclone and apex diameter on hydrocyclone performance was investigated. The results showed that by decreasing the inlet solid percentage and increasing the pulp inlet velocity, the efficiency of hydrocyclone increased. Decreasing the apex diameter caused an increase in the hydrocyclone efficiency. 展开更多
关键词 Hydrocyclone Finite volume method Computational fluid dynamics κ-ε RNC Sarcheshmeh copper complex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部