The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general me...The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.展开更多
Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other h...Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other human needs.The desiccation of lakes leads to severe environmental,economic,and social repercussions.Urmia Lake,located in northwestern Iran and representing a vital natural ecosystem,has experienced a volume reduction of over 90.0%.Our research evaluated diverse water management strategies within the Urmia Lake basin and prospects of inter-basin water transfers.This study focused on strategies to safeguard the environmental water rights of the Urmia Lake by utilizing the modeling and simulating(MODSIM)model.The model simulated changes in the lake's water volume under various scenarios.These included diverting water from incoming rivers,cutting agricultural water use by 40.0%,releasing dam water in non-agricultural seasons,treated wastewater utilization,and inter-basin transfers.Analytical hierarchy process(AHP)was utilized to analyze the simulation results.Expert opinions with AHP analysis,acted as a multi-criteria decision-making tool to evaluate the simulation and determine the optimal water supply source priority for the Urmia Lake.Our findings underscore the critical importance of reducing agricultural water consumption as the foremost step in preserving the lake.Following this,inter-basin water transfers are suggested,with a detailed consideration of the inherent challenges and limitations faced by the source watersheds.It is imperative to conduct assessments on the impacts of these transfers on the downstream users and the potential environmental risks,advocating for a diplomatic and cooperative approach with adjacent country.This study also aims to forecast the volumes of water that can be transferred under different climatic conditions—drought,normal,and wet years—to inform strategic water management planning for the Urmia Lake.According to our projection,implementing the strategic scenarios outlined could significantly augment the lake's level and volume,potentially by 3.57×109–9.38×109 m3 over the coming 10 a and 3.57×109–10.70×109 m3 in the subsequent 15 a.展开更多
The uneven spatial distribution of stations providing precipitable water vapor(PWV)observations in China hinders the effective use of these data in assimilation,nowcasting,and prediction.In this study,we proposed a co...The uneven spatial distribution of stations providing precipitable water vapor(PWV)observations in China hinders the effective use of these data in assimilation,nowcasting,and prediction.In this study,we proposed a complex network framework for exploring the topological structure and the collective behavior of PWV in the mainland of China.We used the Pearson correlation coefficient and transfer entropy to measure the linear and nonlinear relationships of PWV amongst different stations and to set up the undirected and directed complex networks,respectively.Our findings revealed the statistical and geographical distribution of the variables influencing PWV networks and identified the vapor information source and sink stations.Specifically,the findings showed that the statistical and spatial distributions of the undirected and directed complex vapor networks in terms of degree and distance were similar to each other(the common interaction mode for vapor stations and their locations).The betweenness results displayed different features.The largest betweenness ratio for directed networks tended to be larger than that of the undirected networks,implying that the transfer of directed PWV networks was more efficient than that of the undirected networks.The findings of this study are heuristic and will be useful for constructing the best strategy for the PWV data in applications such as vapor observational networks design and precipitation prediction.展开更多
This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast informa...This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.展开更多
The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water fr...The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.展开更多
Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects...Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects,such as the subject,the object and the target of the financing model,Grey Target Model is established in this paper.First,the complex financing mode decision problems of Inter-basin Water Transfer Projects are decomposed by using hierarchical decomposition method.Then Analytical Hierarchy Process(AHP) method is used to calculate the comprehensive weight of evaluation index.Experts' opinions financing model are transformed into the evaluation matrix based on the Dephi method.The Weighted Grey Target Model is used to calculate the approaching degree of financing model and assists financing mode decision.In addition,this paper takes the water diversion project from the Han to the Wei River of Shaanxi Province as a verification example for the model.For other water diversion projects,the evaluation results are also reliable and provide theoretical references for the financing model decision of Inter-basin Water Transfer Projects.展开更多
借鉴和引进"复杂适应系统理论"和现代制造中"敏捷制造"的理念,提出协调、快速、安全的敏捷调水策略,并指导建立敏捷调水多A gen t模型。内容包括:定义敏捷调水的含义,分析敏捷调水过程,针对不同类型的调水计划,敏...借鉴和引进"复杂适应系统理论"和现代制造中"敏捷制造"的理念,提出协调、快速、安全的敏捷调水策略,并指导建立敏捷调水多A gen t模型。内容包括:定义敏捷调水的含义,分析敏捷调水过程,针对不同类型的调水计划,敏捷调水多A gen t模型算法所花费代价的比较与仿真实验分析。展开更多
The luminescent behavior on formation 1∶1 complex of 25,26,27,28 tetra carboxylic acid 5,11,17,23 calixarenesulfonate(L 2) and terbium(Ⅲ) ion was investigated by means of fluorescence spectra. The results showed tha...The luminescent behavior on formation 1∶1 complex of 25,26,27,28 tetra carboxylic acid 5,11,17,23 calixarenesulfonate(L 2) and terbium(Ⅲ) ion was investigated by means of fluorescence spectra. The results showed that the pH value of the solution had obviousan influence on the fluorescence intensity of L 2·Tb 3+ complex, but the fluorescence intensity was hardly changed over the pH range from 6 to 11. The complex exhibits a higher emission quantum yield( φ =0.31) in aqueous solution, which indicates energy transfer type emission. The complexation behavior of L 2 with trivalent lanthanoid ions(Tb 3+ and Eu 3+ ) was also studied in aqueous boracic acid(hydrochloric acid buffer solution(pH 8.0) at 25 ℃ by UV Vis and fluorescence measurements. The spectrophotometric titrations have been performed to give the complex stability constants( K S) for the stoichiometric 1∶1 inclusion complexation of L 2 with Tb 3+ and Eu 3+ . The complex stability for L 2·Eu 3+ was higher than that for L 2·Tb 3+ , but no characteristic fluorescence was found.展开更多
基金Supported by National Natural Science Foundation of China (No. 50979011)
文摘The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.
文摘Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other human needs.The desiccation of lakes leads to severe environmental,economic,and social repercussions.Urmia Lake,located in northwestern Iran and representing a vital natural ecosystem,has experienced a volume reduction of over 90.0%.Our research evaluated diverse water management strategies within the Urmia Lake basin and prospects of inter-basin water transfers.This study focused on strategies to safeguard the environmental water rights of the Urmia Lake by utilizing the modeling and simulating(MODSIM)model.The model simulated changes in the lake's water volume under various scenarios.These included diverting water from incoming rivers,cutting agricultural water use by 40.0%,releasing dam water in non-agricultural seasons,treated wastewater utilization,and inter-basin transfers.Analytical hierarchy process(AHP)was utilized to analyze the simulation results.Expert opinions with AHP analysis,acted as a multi-criteria decision-making tool to evaluate the simulation and determine the optimal water supply source priority for the Urmia Lake.Our findings underscore the critical importance of reducing agricultural water consumption as the foremost step in preserving the lake.Following this,inter-basin water transfers are suggested,with a detailed consideration of the inherent challenges and limitations faced by the source watersheds.It is imperative to conduct assessments on the impacts of these transfers on the downstream users and the potential environmental risks,advocating for a diplomatic and cooperative approach with adjacent country.This study also aims to forecast the volumes of water that can be transferred under different climatic conditions—drought,normal,and wet years—to inform strategic water management planning for the Urmia Lake.According to our projection,implementing the strategic scenarios outlined could significantly augment the lake's level and volume,potentially by 3.57×109–9.38×109 m3 over the coming 10 a and 3.57×109–10.70×109 m3 in the subsequent 15 a.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41775081,41975100,41901016,and 41875100)the Innovation Project of the China Meteorological Administration(Grant No.CXFZ2021Z034)the National Key Research and Development Program of China(Grant No.2018YFC1507702)。
文摘The uneven spatial distribution of stations providing precipitable water vapor(PWV)observations in China hinders the effective use of these data in assimilation,nowcasting,and prediction.In this study,we proposed a complex network framework for exploring the topological structure and the collective behavior of PWV in the mainland of China.We used the Pearson correlation coefficient and transfer entropy to measure the linear and nonlinear relationships of PWV amongst different stations and to set up the undirected and directed complex networks,respectively.Our findings revealed the statistical and geographical distribution of the variables influencing PWV networks and identified the vapor information source and sink stations.Specifically,the findings showed that the statistical and spatial distributions of the undirected and directed complex vapor networks in terms of degree and distance were similar to each other(the common interaction mode for vapor stations and their locations).The betweenness results displayed different features.The largest betweenness ratio for directed networks tended to be larger than that of the undirected networks,implying that the transfer of directed PWV networks was more efficient than that of the undirected networks.The findings of this study are heuristic and will be useful for constructing the best strategy for the PWV data in applications such as vapor observational networks design and precipitation prediction.
基金supported by the National Natural Science Foundation of China (Grant No. 50979011)
文摘This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.
基金supported by the Major International(Regional)Cooperation Project(Grant No.51320105010)the National Natural Science Foundation of China(Grant Nos.51379027,51109025)the Fundamental Research Fund for the Central Universities(Grant No.DUT13JS06)
文摘The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.
基金partly supported by the National Natural Science Foundation of China (Grant Nos.51209170,and 51479160)the foundation for the Plan Projects of Water Conservancy Science and Technology of Shaanxi Province (Grant No.2013SLKJ05)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2016JQ5061)
文摘Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects,such as the subject,the object and the target of the financing model,Grey Target Model is established in this paper.First,the complex financing mode decision problems of Inter-basin Water Transfer Projects are decomposed by using hierarchical decomposition method.Then Analytical Hierarchy Process(AHP) method is used to calculate the comprehensive weight of evaluation index.Experts' opinions financing model are transformed into the evaluation matrix based on the Dephi method.The Weighted Grey Target Model is used to calculate the approaching degree of financing model and assists financing mode decision.In addition,this paper takes the water diversion project from the Han to the Wei River of Shaanxi Province as a verification example for the model.For other water diversion projects,the evaluation results are also reliable and provide theoretical references for the financing model decision of Inter-basin Water Transfer Projects.
文摘The luminescent behavior on formation 1∶1 complex of 25,26,27,28 tetra carboxylic acid 5,11,17,23 calixarenesulfonate(L 2) and terbium(Ⅲ) ion was investigated by means of fluorescence spectra. The results showed that the pH value of the solution had obviousan influence on the fluorescence intensity of L 2·Tb 3+ complex, but the fluorescence intensity was hardly changed over the pH range from 6 to 11. The complex exhibits a higher emission quantum yield( φ =0.31) in aqueous solution, which indicates energy transfer type emission. The complexation behavior of L 2 with trivalent lanthanoid ions(Tb 3+ and Eu 3+ ) was also studied in aqueous boracic acid(hydrochloric acid buffer solution(pH 8.0) at 25 ℃ by UV Vis and fluorescence measurements. The spectrophotometric titrations have been performed to give the complex stability constants( K S) for the stoichiometric 1∶1 inclusion complexation of L 2 with Tb 3+ and Eu 3+ . The complex stability for L 2·Eu 3+ was higher than that for L 2·Tb 3+ , but no characteristic fluorescence was found.