In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel...In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.展开更多
At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a pr...At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.展开更多
To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algori...To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.展开更多
In this paper,a series of major policy decisions used to improve the power grid reliability,reduce the risk and losses of major power outages,and realize the modernization of 21st century power grid are discussed. The...In this paper,a series of major policy decisions used to improve the power grid reliability,reduce the risk and losses of major power outages,and realize the modernization of 21st century power grid are discussed. These decisions were adopted by American government and would also be helpful for the strategic development of Chinese power grid. It is proposed that China should take precaution,carry out security research on the overall dynamic behaviour characteristics of the UHV grid using the complexity theory,and finally provide safeguard for the Chinese UHV grid. It is also pointed out that,due to the lack of matured approaches to controll a cascading failure,the primary duty of a system operator is to work as a "watchdog" for the grid operation security,eliminate the cumulative effect and reduce the risk and losses of major cascading outages with the help of EMS and WAMS.展开更多
This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mod...This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.展开更多
Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities...Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities—can trigger a widespread collapse of all nodes.Here,we extend the cascading failure(Motter-Lai)model to a more realistic perspective,where each node’s load capacity is determined to be nonlinearly correlated with the node’s centrality.Our analysis encompasses a range of synthetic networks featuring small-world or scale-free properties,as well as real-world network configurations like the IEEE bus systems and the US power grid.We find that fine-tuning this nonlinear relationship can significantly enhance a network’s robustness against cascading failures when the network nodes are under attack.Additionally,the selection of initial nodes and the attack strategies also impact overall network robustness.Our findings offer valuable insights for improving the safety and resilience of power grids,bringing us closer to understanding cascading failures in a more realistic context.展开更多
基金This work was supported by National Key Research and Development Program of China(2018YFB0904000).
文摘In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.
文摘At the end of last year, the editors from Power and Electrical Engineers interviewed Zhou Xiaoxin on "Fundamental Research on Enhancing Operation Reliability for Large-Scale Interconnected Power Grids", a project of "973 Program". Mr. Zhou, the chief engineer of China Electric Power Research Institute(CEPRI) and an academician of Chinese Academy of Sciences, is the chief scientist in charge of this research project.
基金the National Science Foundation of China (No.50525721, 50595411)the National Basic Research Program of China(No.G2004CB217902)
文摘To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.
文摘In this paper,a series of major policy decisions used to improve the power grid reliability,reduce the risk and losses of major power outages,and realize the modernization of 21st century power grid are discussed. These decisions were adopted by American government and would also be helpful for the strategic development of Chinese power grid. It is proposed that China should take precaution,carry out security research on the overall dynamic behaviour characteristics of the UHV grid using the complexity theory,and finally provide safeguard for the Chinese UHV grid. It is also pointed out that,due to the lack of matured approaches to controll a cascading failure,the primary duty of a system operator is to work as a "watchdog" for the grid operation security,eliminate the cumulative effect and reduce the risk and losses of major cascading outages with the help of EMS and WAMS.
基金This work was supported by the Shanghai Science and Technology Commission Innovation Action Plan(Grant No.18DZ1203200).
文摘This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.
基金supported by the National Key R&D Program of China for International S&T Cooperation Projects(No.2019YFE0118700)National Natural Science Foundation of China(Nos.62222306 and 61973110)+1 种基金Hunan Young Talents Science and Technology Innovation Project(No.2020RC3048)Natural Science Found for Distinguished Young Scholars of Hunan Province(No.2021JJ10030).
文摘Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities—can trigger a widespread collapse of all nodes.Here,we extend the cascading failure(Motter-Lai)model to a more realistic perspective,where each node’s load capacity is determined to be nonlinearly correlated with the node’s centrality.Our analysis encompasses a range of synthetic networks featuring small-world or scale-free properties,as well as real-world network configurations like the IEEE bus systems and the US power grid.We find that fine-tuning this nonlinear relationship can significantly enhance a network’s robustness against cascading failures when the network nodes are under attack.Additionally,the selection of initial nodes and the attack strategies also impact overall network robustness.Our findings offer valuable insights for improving the safety and resilience of power grids,bringing us closer to understanding cascading failures in a more realistic context.