A series of isostructural d/f molecular compounds Zn(H2L)Ln(NO3)3·CH3OH(Ln = Dy(1), Tb(2) and Sm(3)) were synthesized by the introduction of a designed multifunctional ligand N,N?,N??,N???-tetra...A series of isostructural d/f molecular compounds Zn(H2L)Ln(NO3)3·CH3OH(Ln = Dy(1), Tb(2) and Sm(3)) were synthesized by the introduction of a designed multifunctional ligand N,N?,N??,N???-tetra(2-hydroxy-3-methoxy-5-methylbenzyl)-1,4,7,10-tetraazacyclododecan(H4L = C(44)H(60)N4O8). In the isostructural molecules, each crystallographically independent Zn2+ and Ln3+ centers are connected by two phenolic oxygen atoms. For the six-coordinate Zn-(2+) ion, the coordination geometry can be viewed as a regular bicapped square pyramid. While for the ten-coordinate Ln-(3+) ion, if each O,O?-chelated nitrate ligand is seen as a single coordination site, the coordination geometry can be viewed as a distorted pentagonal bipyramid. The fluorescent spectra show that compounds 2 and 3 exhibited characteristic sharp emissions of Tb-(3+) and Sm-(3+), respectively, while compound 1 was found to be a single-component white-light-emitting complex in the solid state. Thermal stabilities of the three compounds were investigated by using thermal gravimetric analysis. In addition, the thermal decomposition of compound 1 was confirmed by temperature-dependent powder X-ray diffraction technique.展开更多
We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investig...We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.展开更多
Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room tempe...Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.展开更多
Appressed and non-appressed lamella membranes of Castor bean leaf chloroplasts were separated by non-ionic detergent Triton-X 100.Appressed membranes showed a high oxygen-evolving activity and low chl a/b ratio. Exami...Appressed and non-appressed lamella membranes of Castor bean leaf chloroplasts were separated by non-ionic detergent Triton-X 100.Appressed membranes showed a high oxygen-evolving activity and low chl a/b ratio. Examining with SDS-PTGE and liquid nitrogen temperature fluorescence measurement showed that they contained only PSII and light-harvesting pigment-protein complexes (LHCP),and there was no detectable amount of PSI. Freeze-fracture electromicroscopic observation confirmed that this part was really an appressed lamella membrane. Through divalent cation Mg^(++), the thylakoid membranes were induced to unstack and restack.With the addition of Mg^(++), the fluorescence intensity was changed instantly. We realized that there existed two processes:One was a rapid process which was accomplished within 30 s. The other was a slow process of which the time duration was about 60 min. This dual effects of Mg^(++) had not been reported before.We had analyzed the change of F685/F730 and discussed the possible rneehanis ms of light energy distribution between photosystems.展开更多
It is well known that the entanglement of a quantum state is invariant under local unitary transformations.This rule dictates,for example,that the entanglement of internal degrees of freedom of a photon remains invari...It is well known that the entanglement of a quantum state is invariant under local unitary transformations.This rule dictates,for example,that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation.Here,we outline a scenario in which this paradigm does not hold.Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom,the so-called classically entangled states,we demonstrate that the entanglement evolves during propagation,oscillating between maximally entangled(purely vector)and product states(purely scalar).We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally,demonstrating spin–orbit coupling in paraxial beams.This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets,for example,for dynamic laser materials processing,switchable resolution within stimulated emission depletion(STED)systems,and a tractor beam for entanglement.展开更多
基金supported by the Natural Science Foundation of China(No.21171165,21201165 and 91122015)
文摘A series of isostructural d/f molecular compounds Zn(H2L)Ln(NO3)3·CH3OH(Ln = Dy(1), Tb(2) and Sm(3)) were synthesized by the introduction of a designed multifunctional ligand N,N?,N??,N???-tetra(2-hydroxy-3-methoxy-5-methylbenzyl)-1,4,7,10-tetraazacyclododecan(H4L = C(44)H(60)N4O8). In the isostructural molecules, each crystallographically independent Zn2+ and Ln3+ centers are connected by two phenolic oxygen atoms. For the six-coordinate Zn-(2+) ion, the coordination geometry can be viewed as a regular bicapped square pyramid. While for the ten-coordinate Ln-(3+) ion, if each O,O?-chelated nitrate ligand is seen as a single coordination site, the coordination geometry can be viewed as a distorted pentagonal bipyramid. The fluorescent spectra show that compounds 2 and 3 exhibited characteristic sharp emissions of Tb-(3+) and Sm-(3+), respectively, while compound 1 was found to be a single-component white-light-emitting complex in the solid state. Thermal stabilities of the three compounds were investigated by using thermal gravimetric analysis. In addition, the thermal decomposition of compound 1 was confirmed by temperature-dependent powder X-ray diffraction technique.
基金Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091the National Natural Science Foundation of China under Grant No 21627813
文摘We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
基金the National Natural Science Foundation of China,the National Basic Research Program,the Strategic Priority Research Program of Chinese Academy of Sciences
基金Project supported by the National Natural Science Foundation of China (Grant No 10274013).
文摘Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump^probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.
文摘Appressed and non-appressed lamella membranes of Castor bean leaf chloroplasts were separated by non-ionic detergent Triton-X 100.Appressed membranes showed a high oxygen-evolving activity and low chl a/b ratio. Examining with SDS-PTGE and liquid nitrogen temperature fluorescence measurement showed that they contained only PSII and light-harvesting pigment-protein complexes (LHCP),and there was no detectable amount of PSI. Freeze-fracture electromicroscopic observation confirmed that this part was really an appressed lamella membrane. Through divalent cation Mg^(++), the thylakoid membranes were induced to unstack and restack.With the addition of Mg^(++), the fluorescence intensity was changed instantly. We realized that there existed two processes:One was a rapid process which was accomplished within 30 s. The other was a slow process of which the time duration was about 60 min. This dual effects of Mg^(++) had not been reported before.We had analyzed the change of F685/F730 and discussed the possible rneehanis ms of light energy distribution between photosystems.
基金support from the German Research Foundation DFG(EXC 1003–CiM,TRR61)CRG from the Claude Leon foundationBN from the National Research Foundation of South Africa.
文摘It is well known that the entanglement of a quantum state is invariant under local unitary transformations.This rule dictates,for example,that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation.Here,we outline a scenario in which this paradigm does not hold.Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom,the so-called classically entangled states,we demonstrate that the entanglement evolves during propagation,oscillating between maximally entangled(purely vector)and product states(purely scalar).We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally,demonstrating spin–orbit coupling in paraxial beams.This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets,for example,for dynamic laser materials processing,switchable resolution within stimulated emission depletion(STED)systems,and a tractor beam for entanglement.