The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and plati...The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to have been formed in a MORB setting.The chromites and ferritchromite cores are mostly scattered along the MORB and SSZ harzburgite–dunite fields.Ferritchromite rims and ferritchromites with high YFes formed as a result of alteration during serpentinization..展开更多
The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in ab...The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in absence of photosensitizers. Herein, we report the systematic study of the interaction between the oxidized form bqdi ligand, tris-(o-benzoquinonediimine) with divalent first-row transition metal series using DFT calculations. The lowest energy structures, bond length, binding energies, frontier molecular orbital analysis, natural bond orbitals, and global reactivity descriptor were calculated using B3LYP/6-311G(d,P) level of theory. The time dependent-DFT at the CAM-B3LYP/6-311+G(d,p) level of theory was applied to determine the electronic structures and the optical spectra. The theoretical binding trend of the divalent first-row transition metal series is decreasing as follows: Cu >Ti > V > Co > Ni > Fe > Cr > Zn >Mn. Among them, the binding potency of iron (II) by the bqdi ligand was not predominantly sturdy as compared to other first-row divalent transition metal ions. The origin of strong coordination with Fe(II) is attributed to its extra capability to induce covalent coordination of bqdi ligands. The complex exhibited two strong peaks at 370 nm and 452 nm, due to the HOMO-3 to LUMO+1 and HOMO-1 to LUMO transitions, respectively. Natural bond orbital analysis showed that the major interaction happens between the N lone pair electrons of the ligand with an anti-bonding orbital of metal ions, in which Ti showed the highest interaction energy than other metal ions. The present systemic DFT study of bqdi ligands with the first-row transition metals strongly encourages the future establishment of photochemical hydrogen production in absence of photosensitizers.展开更多
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru...A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.展开更多
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t...In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.展开更多
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic m...Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ...As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features...Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.展开更多
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F....Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.展开更多
To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of ...To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge.Liquid chromatography coupled with high-resolution mass spectrometry(LC-HRMS)is the most prominent analyt...The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge.Liquid chromatography coupled with high-resolution mass spectrometry(LC-HRMS)is the most prominent analytical platform for the exploration of novel active compounds from complex matrices.However,the LC-HRMS-based analysis workflow suffers from several bottleneck issues,such as trace content of target compounds,limited acquisition for fragment information,and uncertainty in interpreting relevant MS2 spectra.Lycibarbarspermidines are vital antioxidant active ingredients in Lycii Fructus,while the reported structures are merely focused on dicaffeoylspermidines due to their low content.To comprehensively detect the new structures of lycibarbarspermidine derivatives,a“depict”strategy was developed in this study.First,potential new lycibarbarspermidine derivatives were designed according to the biosynthetic pathway,and a comprehensive database was established,which enlarged the coverage of lycibarbarspermidine derivatives.Second,the polarity-oriented sample preparation of potential new compounds increased the concentration of the target compounds.Third,the construction of the molecular network based on the fragmentation pathway of lycibarbarspermidine derivatives broadened the comprehensiveness of identification.Finally,the weak response signals were captured by data-dependent scanning(DDA)followed by parallel reaction monitoring(PRM),and the efficiency of acquiring MS2 fragment ions of target compounds was significantly improved.Based on the integrated strategy above,210 lycibarbarspermidine derivatives were detected and identified from Lycii Fructus,and in particular,170 potential new compounds were structurally characterized.The integrated strategy improved the sensitivity of detection and the coverage of low-response components,and it is expected to be a promising pipeline for discovering new compounds.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
Abundant interfacial defects remain a significant challenge that hampers both the efficiency and stability of perovskite solar cells(PSCs).Herein,an alcohol-dispersed conducting polymer complex,denoted as PEDOT:F(Poly...Abundant interfacial defects remain a significant challenge that hampers both the efficiency and stability of perovskite solar cells(PSCs).Herein,an alcohol-dispersed conducting polymer complex,denoted as PEDOT:F(Poly(3,4-ethylene dioxythiophene):Perfluorinated sulfonic acid ionomers),is introduced into the interface between perovskite and hole transporting layer in regular-structured PSCs.PEDOT:F serves as a multi-functional interface layer(filling grain boundaries and covering perovskite's grain-surface)to achieve a robust interaction with organic groups within perovskites,which could induce a structural transformation of PEDOT to increase its conductivity for the efficient hole-transport.Furthermore,the strong interaction between PEDOT and perovskites could promote an effective coupling of undercoordinated Pb~(2+)ions with the lone electron pairs near O&S atoms in PEDOT molecules,thereby enhancing defect passivation.Additionally,PEDOT:F with inherent hydrophobic properties prevents effectively moisture invasion into perovskites for the improved long-term stability of the PSCs.Consequently,the PEDOT:F-based PSCs achieved a champion efficiency of 24.81%,and maintained ca.92%of their initial efficiency after 7680 h of storage in a dry air environment,accompanied by the enhanced photothermal stability.展开更多
Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over...Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional p...Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.展开更多
基金funded by the Chinese Geological Survey(Grant Nos.DD20190071,DD20190812)。
文摘The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to have been formed in a MORB setting.The chromites and ferritchromite cores are mostly scattered along the MORB and SSZ harzburgite–dunite fields.Ferritchromite rims and ferritchromites with high YFes formed as a result of alteration during serpentinization..
文摘The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in absence of photosensitizers. Herein, we report the systematic study of the interaction between the oxidized form bqdi ligand, tris-(o-benzoquinonediimine) with divalent first-row transition metal series using DFT calculations. The lowest energy structures, bond length, binding energies, frontier molecular orbital analysis, natural bond orbitals, and global reactivity descriptor were calculated using B3LYP/6-311G(d,P) level of theory. The time dependent-DFT at the CAM-B3LYP/6-311+G(d,p) level of theory was applied to determine the electronic structures and the optical spectra. The theoretical binding trend of the divalent first-row transition metal series is decreasing as follows: Cu >Ti > V > Co > Ni > Fe > Cr > Zn >Mn. Among them, the binding potency of iron (II) by the bqdi ligand was not predominantly sturdy as compared to other first-row divalent transition metal ions. The origin of strong coordination with Fe(II) is attributed to its extra capability to induce covalent coordination of bqdi ligands. The complex exhibited two strong peaks at 370 nm and 452 nm, due to the HOMO-3 to LUMO+1 and HOMO-1 to LUMO transitions, respectively. Natural bond orbital analysis showed that the major interaction happens between the N lone pair electrons of the ligand with an anti-bonding orbital of metal ions, in which Ti showed the highest interaction energy than other metal ions. The present systemic DFT study of bqdi ligands with the first-row transition metals strongly encourages the future establishment of photochemical hydrogen production in absence of photosensitizers.
基金Supported by Central Government Guided Local Science and Technology Innovation Fund Program(ZY20B13)。
文摘A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai Municipality,China(Grant No.21ZR1443900)。
文摘In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
基金co-supported by the National Natural Science Foundation of China (Grant No. 42272267)the Research Grants of Chinese Academy of Geological Sciences (Grant No. JKYQN202309)+3 种基金the National Key Research and Development Project "Key scientific issues of transformative technology" (Grant No. 2019YFA0708604)the second Tibetan Plateau Scientific Expedition and Research Program (STEP) Grant (Grant Nos. 2019QZKK0802, 2019QZKK0901)the Scientific Investigation on Basic Resources of Ministry of Science and Technology (Grant No. 2021FY100101)the Geological Survey of China (Grant Nos. DD20221630, DD20242126)。
文摘Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.
基金supported in part by the National Natural Science Foundation Original Exploration Project of China under Grant 62250004the National Natural Science Foundation of China under Grant 62271244+1 种基金the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975087,42261134533,and 42011530086)the National Magnetic Confinement Fusion Energy Research and Development Program of China(Grant No.2022YFE03190400)the Heilongjiang Touyan Innovation Team Program,China.
文摘Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.
基金supported by grants from the National Natural Science Foundation of China(31901835)the Science and Technology Planning Project of Henan Province of China(212102110145)the International(Regional)Cooperation and Exchange Program of the National Natural Science Foundation of China(31961143018).
文摘Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.
文摘To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金the Fundamental Research Funds for the Central Universities in China(Grant No.:2020-JYB-ZDGG-033).
文摘The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge.Liquid chromatography coupled with high-resolution mass spectrometry(LC-HRMS)is the most prominent analytical platform for the exploration of novel active compounds from complex matrices.However,the LC-HRMS-based analysis workflow suffers from several bottleneck issues,such as trace content of target compounds,limited acquisition for fragment information,and uncertainty in interpreting relevant MS2 spectra.Lycibarbarspermidines are vital antioxidant active ingredients in Lycii Fructus,while the reported structures are merely focused on dicaffeoylspermidines due to their low content.To comprehensively detect the new structures of lycibarbarspermidine derivatives,a“depict”strategy was developed in this study.First,potential new lycibarbarspermidine derivatives were designed according to the biosynthetic pathway,and a comprehensive database was established,which enlarged the coverage of lycibarbarspermidine derivatives.Second,the polarity-oriented sample preparation of potential new compounds increased the concentration of the target compounds.Third,the construction of the molecular network based on the fragmentation pathway of lycibarbarspermidine derivatives broadened the comprehensiveness of identification.Finally,the weak response signals were captured by data-dependent scanning(DDA)followed by parallel reaction monitoring(PRM),and the efficiency of acquiring MS2 fragment ions of target compounds was significantly improved.Based on the integrated strategy above,210 lycibarbarspermidine derivatives were detected and identified from Lycii Fructus,and in particular,170 potential new compounds were structurally characterized.The integrated strategy improved the sensitivity of detection and the coverage of low-response components,and it is expected to be a promising pipeline for discovering new compounds.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
基金supported by the Science Foundation(K201827)the Open Foundation of Hubei Key Laboratory of Optical Information and Pattern Recognition(202103,202206)the Graduate Education Innovation Fund of Wuhan Institute of Technology(CX2023279,CX2023277,CX2023272)。
文摘Abundant interfacial defects remain a significant challenge that hampers both the efficiency and stability of perovskite solar cells(PSCs).Herein,an alcohol-dispersed conducting polymer complex,denoted as PEDOT:F(Poly(3,4-ethylene dioxythiophene):Perfluorinated sulfonic acid ionomers),is introduced into the interface between perovskite and hole transporting layer in regular-structured PSCs.PEDOT:F serves as a multi-functional interface layer(filling grain boundaries and covering perovskite's grain-surface)to achieve a robust interaction with organic groups within perovskites,which could induce a structural transformation of PEDOT to increase its conductivity for the efficient hole-transport.Furthermore,the strong interaction between PEDOT and perovskites could promote an effective coupling of undercoordinated Pb~(2+)ions with the lone electron pairs near O&S atoms in PEDOT molecules,thereby enhancing defect passivation.Additionally,PEDOT:F with inherent hydrophobic properties prevents effectively moisture invasion into perovskites for the improved long-term stability of the PSCs.Consequently,the PEDOT:F-based PSCs achieved a champion efficiency of 24.81%,and maintained ca.92%of their initial efficiency after 7680 h of storage in a dry air environment,accompanied by the enhanced photothermal stability.
基金supported by the Ministry of Science and High Education of Russia(Theme No.368121031700169-1 of ICMM UrB RAS).
文摘Continuous-flow microchannels are widely employed for synthesizing various materials,including nanoparticles,polymers,and metal-organic frameworks(MOFs),to name a few.Microsystem technology allows precise control over reaction parameters,resulting in purer,more uniform,and structurally stable products due to more effective mass transfer manipulation.However,continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows.On the one hand,convection can accelerate reactions by intensifying mass transfer.On the other hand,it may lead to non-uniformity in the final product or defects,especially in MOF microcrystal synthesis.The ability to distinguish regions of convective and diffusive mass transfer may be the key to performing higher-quality reactions and obtaining purer products.In this study,we investigate,for the first time,the possibility of using the information complexity measure as a criterion for assessing the intensity of mass transfer in microchannels,considering both spatial and temporal non-uniformities of liquid’s distributions resulting from convection formation.We calculate the complexity using shearlet transform based on a local approach.In contrast to existing methods for calculating complexity,the shearlet transform based approach provides a more detailed representation of local heterogeneities.Our analysis involves experimental images illustrating the mixing process of two non-reactive liquids in a Y-type continuous-flow microchannel under conditions of double-diffusive convection formation.The obtained complexity fields characterize the mixing process and structure formation,revealing variations in mass transfer intensity along the microchannel.We compare the results with cases of liquid mixing via a pure diffusive mechanism.Upon analysis,it was revealed that the complexity measure exhibits sensitivity to variations in the type of mass transfer,establishing its feasibility as an indirect criterion for assessing mass transfer intensity.The method presented can extend beyond flow analysis,finding application in the controlling of microstructures of various materials(porosity,for instance)or surface defects in metals,optical systems and other materials that hold significant relevance in materials science and engineering.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
基金jointly funded by projects supported by the National Natural Science Foundation of China(Grant No.41872150)the Joint Funds of the National Natural Science Foundation of China(Grant No.U19B6003)Major Scientific and Technological Projects of CNPC during the 13th five-year plan(No.2019A-02-10)。
文摘Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.