Dynamic parameters of hollow spindle are identified and sensitivities to mass and stiffness are calculated by using modal analysis based on CRAS system. A method of adjusting resonance frequency is also presented. All...Dynamic parameters of hollow spindle are identified and sensitivities to mass and stiffness are calculated by using modal analysis based on CRAS system. A method of adjusting resonance frequency is also presented. All of the work is useful for optimizing design hollow spindle.展开更多
A technique to extract real modes from the identified complex modes is presented in this paper, which enables the normalized real mode shapes, modal masses, and full or reduced mass and stiffness matrices to be obtain...A technique to extract real modes from the identified complex modes is presented in this paper, which enables the normalized real mode shapes, modal masses, and full or reduced mass and stiffness matrices to be obtained. The theoretical derivation of the method is provided in detail. An 11-DOF vibration system is used to validate the algorithm, and to analyze the effects of the number of modes utilized and measurement DOFs on the extraction results. Finally, the method is used to extract real modes from both experimental modal analysis and operational modal analysis.展开更多
This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of ratio...This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of rational fraction polynomial equations. A theorem about the roots of these equations is proved in the paper. Based on it, some important conclusions about the modal features of the weakly viscoelastic material structures are given according to their dynamic behaviors.展开更多
Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal iden...Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal identification based on interpreting the stabilization diagram.The whole identification process is divided into four steps from establishing the stabilization diagram to removing the outliers in the identification results.The criteria and algorithms used in each step in the existing studies are carefully summarized and classified.Comparisons between typical methods in cleaning and interpreting the stabilization diagram are also conducted.Real structure benchmarks used in the existing studies to validate the proposed automatic modal identification methods are also summarized.Based on the review and comparison,the specific ratio method for cleaning the stabilization diagram,the hierarchical clustering method for interpreting the stabilization diagram and the adjusted boxplot for removing the outliers in the identification results are the most suitable methods for each step.The key point of automatic modal identification based on interpreting the stabilization diagram has also discussed,and it is recommended to pay more attention to cleaning the stabilization diagram.Future study about automatic modal identification under situation with very few sensors deployed should be more concerned.This review aims to help researchers and practitioners in implementing existing automatic modal identification algorithms effectively and developing more suitable and practical methods for civil engineering structures in the future.展开更多
文摘Dynamic parameters of hollow spindle are identified and sensitivities to mass and stiffness are calculated by using modal analysis based on CRAS system. A method of adjusting resonance frequency is also presented. All of the work is useful for optimizing design hollow spindle.
文摘A technique to extract real modes from the identified complex modes is presented in this paper, which enables the normalized real mode shapes, modal masses, and full or reduced mass and stiffness matrices to be obtained. The theoretical derivation of the method is provided in detail. An 11-DOF vibration system is used to validate the algorithm, and to analyze the effects of the number of modes utilized and measurement DOFs on the extraction results. Finally, the method is used to extract real modes from both experimental modal analysis and operational modal analysis.
文摘This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of rational fraction polynomial equations. A theorem about the roots of these equations is proved in the paper. Based on it, some important conclusions about the modal features of the weakly viscoelastic material structures are given according to their dynamic behaviors.
基金supported by National Key R&D Program of China(No.2019YFB1600702)the National Natural Science Foundation of China(No.51878059).
文摘Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal identification based on interpreting the stabilization diagram.The whole identification process is divided into four steps from establishing the stabilization diagram to removing the outliers in the identification results.The criteria and algorithms used in each step in the existing studies are carefully summarized and classified.Comparisons between typical methods in cleaning and interpreting the stabilization diagram are also conducted.Real structure benchmarks used in the existing studies to validate the proposed automatic modal identification methods are also summarized.Based on the review and comparison,the specific ratio method for cleaning the stabilization diagram,the hierarchical clustering method for interpreting the stabilization diagram and the adjusted boxplot for removing the outliers in the identification results are the most suitable methods for each step.The key point of automatic modal identification based on interpreting the stabilization diagram has also discussed,and it is recommended to pay more attention to cleaning the stabilization diagram.Future study about automatic modal identification under situation with very few sensors deployed should be more concerned.This review aims to help researchers and practitioners in implementing existing automatic modal identification algorithms effectively and developing more suitable and practical methods for civil engineering structures in the future.