We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
A fault diagnosis method based on continuous wavelet transform and improved multi-dimensional residual network was proposed to solve the problem that the working environment of precision machining equipment is very co...A fault diagnosis method based on continuous wavelet transform and improved multi-dimensional residual network was proposed to solve the problem that the working environment of precision machining equipment is very complicated,and the fault characteristic signal is weak and hard to extract.Firstly,the best wavelet base Cmor 3-3 is selected by comparing 6 different wavelet base types.Secondly,continuous wavelet transform(CWT)is applied to the acquired original vibration signal to generate the feature map and process the gray level.Finally,the improved ResNeXt network is used to diagnose faults in precision machining equipment.The experimental results show that the proposed CWT and the improved ResNeXt algorithm have high accuracy in identifying precision machining equipment faults in complex environments,with an average accuracy of 99.4%。展开更多
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金Funding from the Key Research and development plan of Shaanxi Province"Research on key problems of surface finishing for Aerospace Fastener"(2023-YBGY-386).
文摘A fault diagnosis method based on continuous wavelet transform and improved multi-dimensional residual network was proposed to solve the problem that the working environment of precision machining equipment is very complicated,and the fault characteristic signal is weak and hard to extract.Firstly,the best wavelet base Cmor 3-3 is selected by comparing 6 different wavelet base types.Secondly,continuous wavelet transform(CWT)is applied to the acquired original vibration signal to generate the feature map and process the gray level.Finally,the improved ResNeXt network is used to diagnose faults in precision machining equipment.The experimental results show that the proposed CWT and the improved ResNeXt algorithm have high accuracy in identifying precision machining equipment faults in complex environments,with an average accuracy of 99.4%。