期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Channel-Feedback-Free Transmission for Downlink FD-RAN:A Radio Map Based Complex-Valued Precoding Network Approach
1
作者 Zhao Jiwei Chen Jiacheng +3 位作者 Sun Zeyu Shi Yuhang Zhou Haibo Xuemin(Sherman)Shen 《China Communications》 SCIE CSCD 2024年第4期10-22,共13页
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ... As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively. 展开更多
关键词 beamforming complex neural networks deep learning FD-RAN
下载PDF
Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit 被引量:1
2
作者 王莹 祁峰 +1 位作者 张子旭 汪晋宽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期608-612,共5页
Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long... Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long wavelength,limiting their application of fields practical use.In this paper,we proposed a complex one-shot super-resolution(COSSR)framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF.Compared with real convolution neural network-based approaches and complex zero-shot super-resolution(CZSSR),COSSR delivers at least 6.67,0.003,and 6.96%superior higher imaging efficacy in terms of peak signal to noise ratio(PSNR),mean square error(MSE),and structural similarity index measure(SSIM),respectively,for the analyzed data.Additionally,the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data.The COSSR provides a new pathway for THz imaging super-resolution(SR)reconstruction below the diffraction limit. 展开更多
关键词 TERAHERTZ image processing complex convolution neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部