Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can descri...Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.展开更多
KOH/CaO/C supported catalyst was prepared via incipient wetness impregnation and used in synthesis of biodiesel. First, the effects of carrier/active components mass ratio, calcination temperature and calcination time...KOH/CaO/C supported catalyst was prepared via incipient wetness impregnation and used in synthesis of biodiesel. First, the effects of carrier/active components mass ratio, calcination temperature and calcination time on catalytic activity were investigated aiming at biodiesel yield, and the optimal process conditions for preparation of KOH/CaO/C catalysts were: mass ratio of C/CaO was 4:6;KOH solution (mass concentration) was 25%;impregnation time was 24 h;drying temperature was 105°C and time was 4 h;calcination temperature was 500°C and time was 5 h. Then the complex catalysts prepared under the optimal conditions were applied to synthesize biodiesel, and the effects of dose of catalyst, reaction temperature, and reaction time on the yield of biodiesel were investigated. At last, the optimal process conditions for synthesis of biodiesel were concluded: methanol-oil ratio was 10:1;catalyst dose was 2% of that of soybean oil;reaction temperature was 65°C;reaction time was 5 h. The yield of as-prepared biodiesel could be 98%.展开更多
Nano-solid-base catalyst K2O/γ-Al2O3 was prepared and adopted for the synthesis of biodiesel by transesterification of rapeseed oil with methanol. The particle diameter of the catalyst was about 50 nm, which was meas...Nano-solid-base catalyst K2O/γ-Al2O3 was prepared and adopted for the synthesis of biodiesel by transesterification of rapeseed oil with methanol. The particle diameter of the catalyst was about 50 nm, which was measured by transmission electron microscopy (TEM). The variables affecting the yield of biodiesel during transesterification, such as mass ratio of KNO3 to γ-Al2O3, calcination temperature, calcination time, catalyst content, molar ratio of methanol to oil, reaction temperature and reaction time were investigated. The catalyst obtained by calcining a mixture of KNO3 and γ-Al2O3 (mKNO3/mγ-Al2O3 =70 %) at 600℃ for 3 h, was found to be the optimum one, which gave the highest catalytic activity in the reaction. With 3% (mcatalyst/moil) catalyst, when the transesterification was carried out at a molar ratio of methanol to oil of 12 : :1, a reaction temperature of 70℃, and a reaction time of 3 h, yield of 94% was achieved.展开更多
A silica gel supported cobalt(lI) Schiff base complex was synthesized and used for the oxidation of alkyl aromatics using molecular oxygen as an oxidant under atmosphere pressure. The catalyst shows a high conversio...A silica gel supported cobalt(lI) Schiff base complex was synthesized and used for the oxidation of alkyl aromatics using molecular oxygen as an oxidant under atmosphere pressure. The catalyst shows a high conversion of alkyl aromatics and selectivity to benzylic ketones, and could be reused at least 5 times without significant loss of catalytic activity.展开更多
Solid base catalysts for the direct synthesis of dimethyl carbonate(DMC)from carbon dioxide,methanol,and propylene oxide were prepared by loading KCl and K_(2)CO_(3) on the surface of La_(2)O_(3),Y_(2)O_(3),CeO2 and N...Solid base catalysts for the direct synthesis of dimethyl carbonate(DMC)from carbon dioxide,methanol,and propylene oxide were prepared by loading KCl and K_(2)CO_(3) on the surface of La_(2)O_(3),Y_(2)O_(3),CeO2 and Nd_(2)O_(3).The catalysts were characterized by thermogravimetric analysis(TGA)and X-ray diffraction(XRD)techniques.The catalytic activities were efficiently influenced by the preparation conditions.The optimal loading amount of K_(2)CO_(3) is 17.6%(mass)for KCl-K_(2)CO_(3)/Y_(2)O_(3) and 22.2%for other catalysts.Supports affected the activity of catalyst.KCl-K_(2)CO_(3)/Nd_(2)O_(3) exhibited the highest activity.The activity of KCl-K_(2)CO_(3)/Y_(2)O_(3) increased with the increase of calcination temperature in the range of 800℃–900℃.The formation of KYO2,Y_(3)O_(4)Cl or YOX species probably promoted the catalysts.展开更多
以尿素为沉淀剂制备了纳米Ca-Mg-Al水滑石,采用X射线衍射、傅里叶变换红外光谱和扫描电子显微镜对其进行了表征,以其煅烧后得到的纳米Ca-Mg-Al复合金属氧化物为固体碱催化剂,采用微水相超声波辐射协同固体碱催化小桐子油与甲醇进行酯交...以尿素为沉淀剂制备了纳米Ca-Mg-Al水滑石,采用X射线衍射、傅里叶变换红外光谱和扫描电子显微镜对其进行了表征,以其煅烧后得到的纳米Ca-Mg-Al复合金属氧化物为固体碱催化剂,采用微水相超声波辐射协同固体碱催化小桐子油与甲醇进行酯交换反应制备了生物柴油,并研究了催化剂的失活原因。实验结果表明,纳米Ca-Mg-Al水滑石的柱撑阴离子为CO_3^(2-),晶粒大小均匀,呈良好的层状结构。在超声波功率210W、占空比0.7、反应时间30min、温度60℃、甲醇与小桐子油摩尔比4∶1、催化剂用量1.5%(基于小桐子油的质量)的反应条件下,生物柴油收率达94.3%,精制后的生物柴油完全符合德国生物柴油标准DIN V 51606:1997。催化剂失活的主要原因是层状结构的塌陷和副产物甘油附着在催化剂表面,使用后的催化剂用乙醇洗去表面的甘油后,可连续使用12次。展开更多
基金The National Basic Research Program of China(973Program)(No.2010CB732206)the National Natural Science Foundation of China(No.21076044,21276050)
文摘Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.
文摘KOH/CaO/C supported catalyst was prepared via incipient wetness impregnation and used in synthesis of biodiesel. First, the effects of carrier/active components mass ratio, calcination temperature and calcination time on catalytic activity were investigated aiming at biodiesel yield, and the optimal process conditions for preparation of KOH/CaO/C catalysts were: mass ratio of C/CaO was 4:6;KOH solution (mass concentration) was 25%;impregnation time was 24 h;drying temperature was 105°C and time was 4 h;calcination temperature was 500°C and time was 5 h. Then the complex catalysts prepared under the optimal conditions were applied to synthesize biodiesel, and the effects of dose of catalyst, reaction temperature, and reaction time on the yield of biodiesel were investigated. At last, the optimal process conditions for synthesis of biodiesel were concluded: methanol-oil ratio was 10:1;catalyst dose was 2% of that of soybean oil;reaction temperature was 65°C;reaction time was 5 h. The yield of as-prepared biodiesel could be 98%.
基金Supported by the National High-Technology Research and Development Program of China (863 Program) (2007AA100703)
文摘Nano-solid-base catalyst K2O/γ-Al2O3 was prepared and adopted for the synthesis of biodiesel by transesterification of rapeseed oil with methanol. The particle diameter of the catalyst was about 50 nm, which was measured by transmission electron microscopy (TEM). The variables affecting the yield of biodiesel during transesterification, such as mass ratio of KNO3 to γ-Al2O3, calcination temperature, calcination time, catalyst content, molar ratio of methanol to oil, reaction temperature and reaction time were investigated. The catalyst obtained by calcining a mixture of KNO3 and γ-Al2O3 (mKNO3/mγ-Al2O3 =70 %) at 600℃ for 3 h, was found to be the optimum one, which gave the highest catalytic activity in the reaction. With 3% (mcatalyst/moil) catalyst, when the transesterification was carried out at a molar ratio of methanol to oil of 12 : :1, a reaction temperature of 70℃, and a reaction time of 3 h, yield of 94% was achieved.
基金the financial support from the National Natural Science Foundation of China–Academy of Engineering Physics(No.10976014)Natural Science Foundation of Jiangsu Province(No.BK2011697)
文摘A silica gel supported cobalt(lI) Schiff base complex was synthesized and used for the oxidation of alkyl aromatics using molecular oxygen as an oxidant under atmosphere pressure. The catalyst shows a high conversion of alkyl aromatics and selectivity to benzylic ketones, and could be reused at least 5 times without significant loss of catalytic activity.
文摘Solid base catalysts for the direct synthesis of dimethyl carbonate(DMC)from carbon dioxide,methanol,and propylene oxide were prepared by loading KCl and K_(2)CO_(3) on the surface of La_(2)O_(3),Y_(2)O_(3),CeO2 and Nd_(2)O_(3).The catalysts were characterized by thermogravimetric analysis(TGA)and X-ray diffraction(XRD)techniques.The catalytic activities were efficiently influenced by the preparation conditions.The optimal loading amount of K_(2)CO_(3) is 17.6%(mass)for KCl-K_(2)CO_(3)/Y_(2)O_(3) and 22.2%for other catalysts.Supports affected the activity of catalyst.KCl-K_(2)CO_(3)/Nd_(2)O_(3) exhibited the highest activity.The activity of KCl-K_(2)CO_(3)/Y_(2)O_(3) increased with the increase of calcination temperature in the range of 800℃–900℃.The formation of KYO2,Y_(3)O_(4)Cl or YOX species probably promoted the catalysts.
文摘以尿素为沉淀剂制备了纳米Ca-Mg-Al水滑石,采用X射线衍射、傅里叶变换红外光谱和扫描电子显微镜对其进行了表征,以其煅烧后得到的纳米Ca-Mg-Al复合金属氧化物为固体碱催化剂,采用微水相超声波辐射协同固体碱催化小桐子油与甲醇进行酯交换反应制备了生物柴油,并研究了催化剂的失活原因。实验结果表明,纳米Ca-Mg-Al水滑石的柱撑阴离子为CO_3^(2-),晶粒大小均匀,呈良好的层状结构。在超声波功率210W、占空比0.7、反应时间30min、温度60℃、甲醇与小桐子油摩尔比4∶1、催化剂用量1.5%(基于小桐子油的质量)的反应条件下,生物柴油收率达94.3%,精制后的生物柴油完全符合德国生物柴油标准DIN V 51606:1997。催化剂失活的主要原因是层状结构的塌陷和副产物甘油附着在催化剂表面,使用后的催化剂用乙醇洗去表面的甘油后,可连续使用12次。