In this paper, we shall give an Abel type theorem of Jacobi series and then based on it discuss asymptotic expressions near the ellipse of convergence of Jacobi series in complex plane.
This paper gives a mathematical approach to calculate the fractionation factor of isotopes in a general cluster (also known as?super-molecule), which composes of necessary chemical effect within three bonds outside th...This paper gives a mathematical approach to calculate the fractionation factor of isotopes in a general cluster (also known as?super-molecule), which composes of necessary chemical effect within three bonds outside the interested atom(s). The cluster might have imaginary frequencies after being optimized in quantum softwares. The approach includes the contribution of the difference, which is resulted from the substitution of heavy and light isotopes in the cluster, of vibrations of imaginary frequencies to give precise prediction of isotope fractionation factor. We call the new mathematical approximation “reduced partition function ratio in the frequency complex plane (RPFRC)”. If there is no imaginary frequency for a cluster, RPFRC?is simplified to be Urey (1947) or Bigeleisen and Mayer (1947) formula. Final results of this new algorithm are in good agreement with those in earlier studies.展开更多
In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation nu...In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation number was different zero and it was called the Steiner normal when the rotation number was equal to zero. The fixed pole point was given with its components and its relation between Steiner point or Steiner normal was explained. The sagittal motion of a telescopic crane was considered as an example. This motion was described by a double hinge consisting of the fixed control panel of the telescopic crane and the moving arm of the telescopic crane. The theoretical concepts and results were applied for this motion.展开更多
We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi operators or the Jacobi corresponding to the directions in the distribution are of Codazzi type if they satisfy a f...We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi operators or the Jacobi corresponding to the directions in the distribution are of Codazzi type if they satisfy a further condition. We obtain that that they must be either of type (A) or of type (B) (see [2]), but no one of these satisfies our condition. As a consequence, we obtain the non-existence of Hopf real hypersurfaces in such ambient spaces whose Jacobi operators corresponding to -directions are parallel with the same further condition.展开更多
Based on the high frequency approximation theory, the complex ray expansion of plane wave is derived. The results obtained may be regarded as the basis of the numerical expansion of plane wave, which has been used suc...Based on the high frequency approximation theory, the complex ray expansion of plane wave is derived. The results obtained may be regarded as the basis of the numerical expansion of plane wave, which has been used successfully in some problems.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of b...In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of boundary value problems for analytic function, the stress distribution is given in closed forms.展开更多
A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions....A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.展开更多
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natu...A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.展开更多
In this paper problems of collinear cracks between bonded dissimilar materials under antiplane concentrated forces are dealt with. General solutions of the problems are formulated by applying extended Schwarz principl...In this paper problems of collinear cracks between bonded dissimilar materials under antiplane concentrated forces are dealt with. General solutions of the problems are formulated by applying extended Schwarz principle integrated with the analysis of the singularity of complex stress functions. Closed-form solutions of several typical problems are obtained and the stress intensity factors are given. These solutions include a series of original results and some results of previous researches. It is found that under symmetrical loads the solutions for the dissimilar materials are the same as those for the homogeneous materia[7]展开更多
文摘In this paper, we shall give an Abel type theorem of Jacobi series and then based on it discuss asymptotic expressions near the ellipse of convergence of Jacobi series in complex plane.
文摘This paper gives a mathematical approach to calculate the fractionation factor of isotopes in a general cluster (also known as?super-molecule), which composes of necessary chemical effect within three bonds outside the interested atom(s). The cluster might have imaginary frequencies after being optimized in quantum softwares. The approach includes the contribution of the difference, which is resulted from the substitution of heavy and light isotopes in the cluster, of vibrations of imaginary frequencies to give precise prediction of isotope fractionation factor. We call the new mathematical approximation “reduced partition function ratio in the frequency complex plane (RPFRC)”. If there is no imaginary frequency for a cluster, RPFRC?is simplified to be Urey (1947) or Bigeleisen and Mayer (1947) formula. Final results of this new algorithm are in good agreement with those in earlier studies.
文摘In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation number was different zero and it was called the Steiner normal when the rotation number was equal to zero. The fixed pole point was given with its components and its relation between Steiner point or Steiner normal was explained. The sagittal motion of a telescopic crane was considered as an example. This motion was described by a double hinge consisting of the fixed control panel of the telescopic crane and the moving arm of the telescopic crane. The theoretical concepts and results were applied for this motion.
文摘We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi operators or the Jacobi corresponding to the directions in the distribution are of Codazzi type if they satisfy a further condition. We obtain that that they must be either of type (A) or of type (B) (see [2]), but no one of these satisfies our condition. As a consequence, we obtain the non-existence of Hopf real hypersurfaces in such ambient spaces whose Jacobi operators corresponding to -directions are parallel with the same further condition.
文摘Based on the high frequency approximation theory, the complex ray expansion of plane wave is derived. The results obtained may be regarded as the basis of the numerical expansion of plane wave, which has been used successfully in some problems.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
文摘In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of boundary value problems for analytic function, the stress distribution is given in closed forms.
文摘A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.
基金supported by the National Natural Science Foundation of China(Nos.10932001,11072015, and 10761005)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.
文摘In this paper problems of collinear cracks between bonded dissimilar materials under antiplane concentrated forces are dealt with. General solutions of the problems are formulated by applying extended Schwarz principle integrated with the analysis of the singularity of complex stress functions. Closed-form solutions of several typical problems are obtained and the stress intensity factors are given. These solutions include a series of original results and some results of previous researches. It is found that under symmetrical loads the solutions for the dissimilar materials are the same as those for the homogeneous materia[7]