A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has diff...A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.展开更多
This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-...This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.展开更多
Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of ...Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of work breakdown structure and risk breakdown structure(WBS⁃RBS)is proposed to identify the project risks.In this paper,interval numbers are used to evaluate the risk levels,weights are assigned automatically based on the complexity and risk degree of WBS to distinguish three types of nodes in WBS,and a risk assessment algorithm is designed to assess safety risk at all layers of the project.A case study is conducted to demonstrate how to apply the method.The results show the practicality,robustness and efficiency of our new method,which can be applied to different kinds of large⁃scale complex projects in reality.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
We discussed a totally real Riemannian foliations with parallel mean curvature on a complex projective space.We carried out the divergence of a vector field on it and obtained a formula of Simons’type.
In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fu...In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fundamental form and the Rieci curature of the 2-harmornic totally real submanifold in the complex projective space.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of sm...Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.展开更多
The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate frac...The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 61901530, and 62061008)the Innovation Project of Graduate of Central South University (Grant No. 2022zzts0681)。
文摘A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.
基金the Natural Science Foundation of Education Committee of Anhui Province(2004kj166zd)Foundation for Younger Teachers of Anhui Normal University(2005xqn01).
文摘This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
基金This paper was supported by National Social Science Foundation of China(2019⁃SKJJ⁃035)。
文摘Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of work breakdown structure and risk breakdown structure(WBS⁃RBS)is proposed to identify the project risks.In this paper,interval numbers are used to evaluate the risk levels,weights are assigned automatically based on the complexity and risk degree of WBS to distinguish three types of nodes in WBS,and a risk assessment algorithm is designed to assess safety risk at all layers of the project.A case study is conducted to demonstrate how to apply the method.The results show the practicality,robustness and efficiency of our new method,which can be applied to different kinds of large⁃scale complex projects in reality.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.
文摘We discussed a totally real Riemannian foliations with parallel mean curvature on a complex projective space.We carried out the divergence of a vector field on it and obtained a formula of Simons’type.
文摘In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fundamental form and the Rieci curature of the 2-harmornic totally real submanifold in the complex projective space.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
基金supported by the National Natural Science Foundation of China(Nos.12071424,11531012,12201087).
文摘Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.
基金supported by Key Program of National Natural Science Foundation of China (No. 61533011)National Natural Science Foundation of China (Nos. 61273088 and 61603203)
文摘The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.