The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff...The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.展开更多
The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely rel...The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely related to the fluids inside the considered coal rocks,such as gas,water and coalbed methane.In the present analysis,considering different lithological structures,and using the Cole-Cole model,a forward simulation method is used to study different physical parameters such as the zero-frequency resistivity,the polarizability,the relaxation time,and the frequency correlation coefficient.Moreover,using a least square technique,a complex resistivity“inversion”algorithm is written.The comparison of the initial model parameters and those obtained after inversion is used to verify the stability and accuracy of such approach.The method is finally applied to primary-structure coal considered as the experimental sample for complex resistivity measurements.展开更多
Quantum-chemical calculation methods have been used to examine an influence of tautomeric equilibrium [Azo Hydrazo] on a structure of 1:2 chromium metal complex dyes called Gryfalan Navy Blue RL (CI 15 707, Acid...Quantum-chemical calculation methods have been used to examine an influence of tautomeric equilibrium [Azo Hydrazo] on a structure of 1:2 chromium metal complex dyes called Gryfalan Navy Blue RL (CI 15 707, Acid Blue 193) and Gryfalan Black RL (Acid Black 194). Chromatographic analysis indicates that synthesis yields a mixture of several dyes with different shades. Studies conducted to date have suggested that such dye complexes can constitute Drew-Pfitzner or Pfeiffer-Schetty structural isomers [1]. It is a know fact, that o-hydroxy-azo dyes exist in equilibrium of tautomeric azo and hydrazone forms. We decided to examine, whether color properties of examined metal-complex dyes can be influenced also by an azo-hydrazone equilibrium and what kind of influence on it has sulphonic groups present in molecules. Calculation and optimization of the geometrical structure were performed using the AM1 methods for monoazoo-hydroxy-azo dyesand ZINDO/1 for 1:2 chromium metal complex dyes. It was stated that monoazo dyes can create complexes in both forms: azo and hydrazone, because energy differences between each form of the metal complex dye are so small, that the monoazo dye can, in practice, create complexes in both the azo and the hydrazone form, with energy differences not exceeding about 4 - 11 kcal/mol. It is calculated that spatial structure changes with an angle of about 90° between two molecules of the dye, and angles of 10° - 20° between the naphthalene moieties. Similar electron density on the hydroxyl and ketone groups suggests that the mixture contains a dominant share of the azo form. The presence of an ionised sulphonic group was also found to affect on the tautomer equilibrium.展开更多
文摘The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.
基金This research was funded by the National Natural Science Foundation under Grant No.[41974151]by the Jiangsu Province Natural Science Foundation under Grant No.[BK20181360]+1 种基金by the Major Scientific and Technological Innovation Project of Shandong Province of China under Grant No.[2019JZZY010820]by the Shaanxi Province Science and Technology Innovation Guidance Special No.[2020CGHJ-005].
文摘The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely related to the fluids inside the considered coal rocks,such as gas,water and coalbed methane.In the present analysis,considering different lithological structures,and using the Cole-Cole model,a forward simulation method is used to study different physical parameters such as the zero-frequency resistivity,the polarizability,the relaxation time,and the frequency correlation coefficient.Moreover,using a least square technique,a complex resistivity“inversion”algorithm is written.The comparison of the initial model parameters and those obtained after inversion is used to verify the stability and accuracy of such approach.The method is finally applied to primary-structure coal considered as the experimental sample for complex resistivity measurements.
文摘Quantum-chemical calculation methods have been used to examine an influence of tautomeric equilibrium [Azo Hydrazo] on a structure of 1:2 chromium metal complex dyes called Gryfalan Navy Blue RL (CI 15 707, Acid Blue 193) and Gryfalan Black RL (Acid Black 194). Chromatographic analysis indicates that synthesis yields a mixture of several dyes with different shades. Studies conducted to date have suggested that such dye complexes can constitute Drew-Pfitzner or Pfeiffer-Schetty structural isomers [1]. It is a know fact, that o-hydroxy-azo dyes exist in equilibrium of tautomeric azo and hydrazone forms. We decided to examine, whether color properties of examined metal-complex dyes can be influenced also by an azo-hydrazone equilibrium and what kind of influence on it has sulphonic groups present in molecules. Calculation and optimization of the geometrical structure were performed using the AM1 methods for monoazoo-hydroxy-azo dyesand ZINDO/1 for 1:2 chromium metal complex dyes. It was stated that monoazo dyes can create complexes in both forms: azo and hydrazone, because energy differences between each form of the metal complex dye are so small, that the monoazo dye can, in practice, create complexes in both the azo and the hydrazone form, with energy differences not exceeding about 4 - 11 kcal/mol. It is calculated that spatial structure changes with an angle of about 90° between two molecules of the dye, and angles of 10° - 20° between the naphthalene moieties. Similar electron density on the hydroxyl and ketone groups suggests that the mixture contains a dominant share of the azo form. The presence of an ionised sulphonic group was also found to affect on the tautomer equilibrium.