期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions 被引量:9
1
作者 高富东 潘存云 +1 位作者 韩艳艳 张湘 《Journal of Central South University》 SCIE EI CAS 2012年第7期1859-1868,共10页
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c... Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment. 展开更多
关键词 complex sea condition autonomous underwater vehicle (AUV) trajectory tracking sliding mode control
下载PDF
Nonlinear Dynamic Characteristics of the Vectored Thruster AUV in Complex Sea Conditions 被引量:3
2
作者 GAO Fudong PAN Cunyun +1 位作者 XU Xiaojun ZHANG Xiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期935-946,共12页
The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters wh... The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the problem of especial singularities when the pitch angle θ = ±90° but also clears up the difficulties of computation and display of the coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design. 展开更多
关键词 complex sea conditions vectored thruster autonomous underwater vehicle nonlinear dynamic characteristics
下载PDF
Analysis and innovation of key technologies for autonomous underwater vehicles 被引量:3
3
作者 高富东 韩艳艳 +1 位作者 王海东 徐男 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3347-3357,共11页
As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which prom... As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions. 展开更多
关键词 autonomous underwater vehicle(AUV) key technology overall design complex sea condition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部