In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法...复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法利用节点的k -shell值进行网络划分并引导搜索路径,利用超点聚合处理k -shell子网来降低路径搜索中节点和连边的规模,通过在路径搜索过程使用双向搜索树方法提高算法的计算效率和准确率。实验结果表明,算法通用性较好,在现实与仿真大规模复杂网络中均具有较高的计算效率和准确率。展开更多
复杂网络中,评估节点的重要性对于研究网络结构和传播过程有着重要意义.通过节点的位置,K-shell分解算法能够很好地识别关键节点,但是这种算法导致很多节点具有相同的K-shell(Ks)值.同时,现有的算法大都只考虑局部指标或者全局指标,导...复杂网络中,评估节点的重要性对于研究网络结构和传播过程有着重要意义.通过节点的位置,K-shell分解算法能够很好地识别关键节点,但是这种算法导致很多节点具有相同的K-shell(Ks)值.同时,现有的算法大都只考虑局部指标或者全局指标,导致评判节点重要性的因素单一.为了更好地识别关键节点,提出了EKSDN(Extended K-shell and Degree of Neighbors)算法,该算法综合考虑了节点的全局指标加权核值以及节点的局部指标度数.与SIR(Susceptible-Infectious-Recovered)模型在真实复杂网络中模拟结果相比,EKSDN算法能够更好地识别关键节点.展开更多
To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under ...To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.展开更多
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.
文摘复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法利用节点的k -shell值进行网络划分并引导搜索路径,利用超点聚合处理k -shell子网来降低路径搜索中节点和连边的规模,通过在路径搜索过程使用双向搜索树方法提高算法的计算效率和准确率。实验结果表明,算法通用性较好,在现实与仿真大规模复杂网络中均具有较高的计算效率和准确率。
文摘复杂网络中,评估节点的重要性对于研究网络结构和传播过程有着重要意义.通过节点的位置,K-shell分解算法能够很好地识别关键节点,但是这种算法导致很多节点具有相同的K-shell(Ks)值.同时,现有的算法大都只考虑局部指标或者全局指标,导致评判节点重要性的因素单一.为了更好地识别关键节点,提出了EKSDN(Extended K-shell and Degree of Neighbors)算法,该算法综合考虑了节点的全局指标加权核值以及节点的局部指标度数.与SIR(Susceptible-Infectious-Recovered)模型在真实复杂网络中模拟结果相比,EKSDN算法能够更好地识别关键节点.
文摘To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.