In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-...In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.展开更多
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equ...Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.展开更多
′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func...′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.展开更多
文摘In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.
基金Supported by the Natural Science Foundation of Zhejiang Province (1 0 2 0 37)
文摘Based on the modified Jocobi elliptic function expansion method and the modified extended tanh function method,a new algebraic method is presented to obtain mu ltiple travelling wave solutions for nonlinear wave equations.By using the metho d,Ito's 5th order and 7th order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found.With modulus m→1 or m→0,these solutions degenerate into corresponding solitary wave s olutions,shock wave solutions and trigonometric function solutions.
文摘′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.