期刊文献+
共找到358篇文章
< 1 2 18 >
每页显示 20 50 100
Optimization of Fixture Number in Large Thin-Walled Parts Assembly Based on IPSO
1
作者 Changhui Liu Jing Wang +3 位作者 Ying Zheng Ke Jin Jianbo Yu Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期213-227,共15页
There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to... There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time. 展开更多
关键词 Assembly quality Large thin-walled parts Fixture layout PSO FEM
下载PDF
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
2
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
A model of deformation of thin-wall surface parts during milling machining process 被引量:11
3
作者 王凌云 黄红辉 +2 位作者 Rae W.WEST 李厚佳 杜继涛 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1107-1115,共9页
A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The alumi... A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result. 展开更多
关键词 thin-walled surface parts milling force elastic deformation finite element model
下载PDF
Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method 被引量:6
4
作者 PAN Ming-hui TANG Wen-cheng +1 位作者 XING Yan NI Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期60-77,共18页
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr... In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future. 展开更多
关键词 thin-wall parts assembly assembly deformation deviation theoretical deformation model finite element simulation measuring experiment
下载PDF
Welding thermal characteristics analysis with numerical simulation for thin-wall parts assembly under different conditions 被引量:1
5
作者 潘明辉 汤文成 幸研 《Journal of Southeast University(English Edition)》 EI CAS 2018年第2期199-207,共9页
In order to analyze the welding thermal characteristics problem,the multiscale finite element(FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emp... In order to analyze the welding thermal characteristics problem,the multiscale finite element(FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emphatically study their welding temperature distributions under different conditions.Simultaneously,different welding technology parameters and welding directions are taken into account,and the fillet weld for different welding parameters is employed on the thin-wall parts.Through comparison analysis,the results show that different welding directions,welding thicknesses and welding heat source parameters have a certain impact on the temperature distribution.Meanwhile,for the thin-wall assembly structure of the same thickness,when the heat source is moving,the greater the moving speed,the smaller the heating area,and the highest temperature will decrease.Therefore,the welding temperature field distribution can be altered by adjusting welding parameters,heat source parameters,welding thickness and welding direction,which is conducive to reducing welding deformation and choosing an appropriate and optimal welding thickness of thin-wall parts and relative welding process parameters,thus improving thin-wall welding structure assembly precision in the actual large-size welding structure assembly process in future. 展开更多
关键词 welding assembly thin-wall parts thermal characteristics heat source model welding direction
下载PDF
Optimization of material removal strategy in milling of thin-walled parts 被引量:1
6
作者 李继博 张定华 吴宝海 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期108-112,共5页
The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material ... The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material removal represents the persistence of the workpiece cutting stiffness in operation to advance the machining accuracy and machining efficiency.On the basis of theoretical models of cutting stiffness and deformation,finite element method (FEM) is applied to calculate the virtual displacements of the thin-walled part under given virtual loads at the nodes of the discrete surface.With the reference of deformation distribution of the thin-walled part,the milling material removal strategy is optimized to make the best of bracing ability of still uncut material.This material removal method is summarized as the lower stiffness region removed firstly and the higher stiffness region removed next.Analytical and experimental results show the availability,which has been verified by the blade machining test in this work,for thin-walled parts to reduce cutting deformation and meliorate machining quality. 展开更多
关键词 surface stiffness distribution end milling thin-walled parts removal strategy cutting stiffness
下载PDF
Initial residual stress experiment and simulation of thin-walled parts for layer removal method
7
作者 刘宇男 Wang Min +2 位作者 Zan Tao Gao Xiangsheng Zhang Yanlin 《High Technology Letters》 EI CAS 2018年第1期75-81,共7页
Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial r... Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method. 展开更多
关键词 INITIAL RESIDUAL stress thin-wallED parts layer.removal method FINITE element
下载PDF
Mapping relationship analysis of welding assembly properties for thin-walled parts with finite element and machine learning algorithm
8
作者 Pan Minghui Liao Wenhe +1 位作者 Xing Yan Tang Wencheng 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期126-136,共11页
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ... The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future. 展开更多
关键词 parallel T-shaped thin-walled parts welding assembly property finite element analysis mapping relationship machine learning algorithm
下载PDF
High-efficiency forming processes for complex thin-walled titanium alloys components: state-of-the-art and perspectives 被引量:16
9
作者 Kehuan Wang Liliang Wang +4 位作者 Kailun Zheng Zhubin He Denis J Politis Gang Liu Shijian Yuan 《International Journal of Extreme Manufacturing》 2020年第3期17-40,共24页
Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimen... Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost. 展开更多
关键词 titanium alloys complex thin-walled components high efficiency hot gas pressure forming hot stamping-quenching
下载PDF
Deformation Analysis and Fixture Design of Thin-walled Cylinder in Drilling Process Based on TRIZ Theory 被引量:2
10
作者 Fulin WANG Bo SHENG +3 位作者 Yongwen WU Jiawang LI Zhou XU Zhaoxia ZHU 《Mechanical Engineering Science》 2021年第1期57-64,共8页
Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling p... Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts. 展开更多
关键词 thin-walled cylindrical parts FIXTURE Deformation analysis DRILLING TRIZ theory
下载PDF
Relative Varying Dynamics Based Whole Cutting Process Optimization for Thin‑walled Parts
11
作者 Yuyang Tang Jun Zhang +3 位作者 Jia Yin Lele Bai Huijie Zhang Wanhua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期194-206,共13页
Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative... Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative dynamics results in the difference of cutting stage division and cutting parameter selection.This paper develops a novel method for whole cutting process optimization based on the relative varying dynamic characteristic of machining system.A new strategy to distinguish cutting stages depending on the dominated dynamics during machining process is proposed,and a thickness-dependent model to predict the dynamics of part is developed.Optimal cutting parameters change with stages,which can be divided by the critical thickness of part.Based on the dynamics comparison between machine tool and thickness-varying part,the critical thicknesses are predicted by an iterative algorithm.The proposed method is validated by the machining of three benchmarks.Good agreements have been obtained between prediction and experimental results in terms of stages identification,meanwhile,the optimized parameters perform well during the whole cutting process. 展开更多
关键词 thin-walled parts Varying dynamics Frequency response function Whole cutting process OPTIMIZATION
下载PDF
Elliptical vibration cutting of large-size thin-walled curved surface parts of pure iron by using diamond tool with active cutting edge shift
12
作者 Zhenhua JIAO Renke KANG +1 位作者 Dongxing DU Jiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期402-419,共18页
Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to ach... Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to achieve due to the serious tool wear and deformation when machining the parts with conventional cutting tools.In this paper,an elliptical vibration cutting(EVC)with active cutting edge shift(ACES)based on a long arbor vibration device is proposed for ultraprecision machining the pure iron parts by using diamond tool.Compared with cutting at a fixed cutting edge,the influence of ACES on the EVC was analyzed.Experiments in EVC of pure iron with ACES were conducted.The evolutions of the surface roughness,surface topography,and chip morphology with tool wear in EVC with ACES are revealed.The reasonable parameters of ultraprecision machining the pure iron parts by EVC with ACES were determined.It shows that the ACES has a slight influence on the machined surface roughness and surface topography.The diamond tool life can be significantly prolonged in EVC of pure iron with ACES than that with a fixed cutting edge,so that high profile accuracy and surface quality could be obtained even at higher nominal cutting speed.A typical thin-walled curved surface pure iron part with diameter φ240 mm,height 122 mm,and wall thickness 2 mm was fabricated by the presented method,and its profile error and surface roughness achieved PV 2.2μm and Ra less than 50 nm,respectively. 展开更多
关键词 Curved surface Diamond tool Elliptical vibration cutting Pure iron thin-walled parts
原文传递
Debinding and sintering of warm compacted and binder-treated complex iron-base part
13
作者 倪东惠 周水波 +1 位作者 肖志瑜 李元元 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期589-593,共5页
Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered... Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered parts were studied. Binder removal was accomplished by heating green compacts at intermediate temperatures with optimal heating rates until the debinding temperature was reached. Results show that by controlling debinding process,complex parts with good shape consistence can be obtained by warm compaction of binder-treated powder. Fine and shiny surface was obtained and no surface defect can be observed for sintered parts debinded at 2 ℃/min,while defect can be observed in sintered parts debinded at 4 ℃/min. 展开更多
关键词 热压成型 分离 粘合剂 粉末冶金
下载PDF
复杂曲面零件的五轴数控加工技术研究 被引量:2
14
作者 张映故 《现代制造技术与装备》 2024年第3期63-65,共3页
随着科技水平的不断提升,精密复杂曲面零件的应用越来越广泛。曲面驱动是复杂曲面零件加工的重要方法,驱动刀轨的规划直接关系到曲面物理特性的调控,应用五轴数控加工技术能够提升复杂曲面零件的加工质量。文章主要研究复杂曲面零件的... 随着科技水平的不断提升,精密复杂曲面零件的应用越来越广泛。曲面驱动是复杂曲面零件加工的重要方法,驱动刀轨的规划直接关系到曲面物理特性的调控,应用五轴数控加工技术能够提升复杂曲面零件的加工质量。文章主要研究复杂曲面零件的五轴数控加工技术,以佛像这个复杂曲面零件为例,分析了曲面驱动刀轨规划、工装方案设计、加工策略以及试制加工过程。在实际加工过程中,技术人员应充分理解驱动刀轨规划思路与原理,在粗加工、精加工中完善刀轨设计,并进行试制加工。 展开更多
关键词 复杂曲面零件 五轴数控加工技术 曲面驱动 刀轨 粗加工 精加工
下载PDF
住宅部品生产商质量认证行为扩散研究
15
作者 苏义坤 于海楠 郑志哲 《土木工程与管理学报》 2024年第1期75-81,共7页
认证是提升住宅部品质量的有效手段,其扩散推广有利于住宅产业供给侧转型升级。为探究质量认证行为在住宅部品生产商间的扩散机理,本文引入复杂网络演化博弈理论构建了住宅部品质量认证扩散模型。通过数值仿真分析了市场导向和政府激励... 认证是提升住宅部品质量的有效手段,其扩散推广有利于住宅产业供给侧转型升级。为探究质量认证行为在住宅部品生产商间的扩散机理,本文引入复杂网络演化博弈理论构建了住宅部品质量认证扩散模型。通过数值仿真分析了市场导向和政府激励影响下质量认证行为在住宅部品生产商间的扩散过程。结果表明:消费者溢价、认证影响力与政府激励在一定范围内均可有效促进质量认证行为在住宅部品生产商间的正向扩散,其中生产商对消费者溢价的变化最为敏感。最后,通过分析住宅部品生产商质量认证行为扩散的演化特征,对质量认证在住宅部品生产领域的推广提出实质性对策与建议。研究从市场和政府两方面拓展了住宅部品生产商质量认证行为扩散的理论研究体系,促进了住宅高质量发展的理论实践。 展开更多
关键词 住宅部品 认证 复杂网络 演化博弈 扩散
下载PDF
复杂曲面机器人磨抛技术研究现状与趋势展望综述
16
作者 张伟 余新阳 张伟中 《机电工程》 CAS 北大核心 2024年第7期1240-1250,共11页
在航空、能源、交通、军工等国家战略领域中,针对复杂曲面零件的自动化、高质量和高效率磨抛需求,对近年来国内外工业机器人磨抛加工关键技术及集成系统的研究和应用进展进行了综述。首先,从复杂曲面机器人磨抛机理及工艺优化、磨抛运... 在航空、能源、交通、军工等国家战略领域中,针对复杂曲面零件的自动化、高质量和高效率磨抛需求,对近年来国内外工业机器人磨抛加工关键技术及集成系统的研究和应用进展进行了综述。首先,从复杂曲面机器人磨抛机理及工艺优化、磨抛运动轨迹规划、磨削力控制等方面总结了复杂曲面机器人磨抛技术的研究成果;然后,介绍了国内外机器人磨抛集成系统应用现状;最后,分析了复杂曲面机器人磨抛技术的主要问题以及发展趋势,为该技术的发展提供了重要的指导和方向。研究结果表明:当前该技术存在的主要问题包括磨抛机理不够清晰,数学模型不够准确,复杂曲面机器人磨抛轨迹规划效率不高,磨抛力的控制仍不够精准等;另外,磨抛工艺参数优化、机器人力位混合控制、机器人高精度标定与误差补偿、基于数字孪生的机器人磨抛在线监控、机器人磨抛细分应用场景等方面的研究和实践将极大地推动机器人磨抛技术的发展和应用。 展开更多
关键词 发展趋势 抛磨机器人 复杂曲面零件 磨抛工艺参数优化 磨抛在线监控 高精度标定与误差补偿 磨削力控制 磨抛运动轨迹规划
下载PDF
航天复杂薄壁零件加工工艺知识图谱构建及其应用 被引量:2
17
作者 彭仕鑫 肖彪 +5 位作者 赵正彩 徐宝德 丁国智 尉渊 苏宏华 王萌 《机电工程》 CAS 北大核心 2024年第4期709-719,共11页
针对航天复杂薄壁零件加工工艺数据结构化程度低、难以重用等问题,将知识图谱引入工艺设计领域,提出了一种典型的复杂薄壁零件加工工艺知识图谱构建方法。首先,自顶向下定义工艺知识层次结构,利用本体建模构建了模式层;其次,利用知识抽... 针对航天复杂薄壁零件加工工艺数据结构化程度低、难以重用等问题,将知识图谱引入工艺设计领域,提出了一种典型的复杂薄壁零件加工工艺知识图谱构建方法。首先,自顶向下定义工艺知识层次结构,利用本体建模构建了模式层;其次,利用知识抽取、知识融合及本体关系建立的方法自底向上构建了数据层,通过Neo4j图数据库完成了模式层与数据层的映射,并实现了工艺知识的可视化表征和快速检索;然后,在构建完成的工艺知识图谱基础上,结合零件属性和特征拓扑关系的相似度实现了工艺路线推荐;最后,搭建了复杂薄壁零件加工工艺知识图谱可视化系统,并以框段类零件为例展示了工艺知识检索与工艺路线推荐功能。研究结果表明:对基于知识图谱和相似度计算的工艺路线推荐模型进行了500次测试,有94.7%的推荐列表中存在与目标零件相符的工艺路线。这证明了该工艺知识图谱的构建方法是可行的,并且其对工艺设计工作起到辅助决策作用,可以有效提高工艺查询和设计的效率。 展开更多
关键词 工艺设计 复杂薄壁零件加工工艺 知识融合 工艺路线推荐 知识抽取 可视化系统
下载PDF
基于误差修正的激光扫描复杂零件加工系统
18
作者 郭晋飞 杜川 贾蒙 《激光杂志》 CAS 北大核心 2024年第2期239-244,共6页
针对降低复杂零件加工过程中的零件误差问题,设计基于误差修正的激光扫描复杂零件加工系统。以激光扫描为基础设计复杂零件加工系统的整体架构。基于系统整体架构利用激光扫描模块获取材料信息,并采用网格修正法修正扫描单元中的振镜误... 针对降低复杂零件加工过程中的零件误差问题,设计基于误差修正的激光扫描复杂零件加工系统。以激光扫描为基础设计复杂零件加工系统的整体架构。基于系统整体架构利用激光扫描模块获取材料信息,并采用网格修正法修正扫描单元中的振镜误差;将激光扫描结果传输至DSP控制模块内,通过直线、圆弧插补运算确定加工模块内不同加工单元的刀具加工路径,同时利用不同伺服单元的位置等反馈信号对比,实现机械手模块运动控制。实验结果显示该系统激光扫描误差控制在0.5 mm以下,符合风机应用标准,加工时间最高为37 min,有效提升了零件可应用率。 展开更多
关键词 误差修正 激光扫描 复杂零件 DSP芯片 刀具加工路径 机械手
下载PDF
Collaborative manufacturing technologies of structure shape and surface integrity for complex thin-walled components of aero-engine:Status,challenge and tendency 被引量:7
19
作者 Biao ZHAO Wenfeng DING +10 位作者 Zhongde SHAN Jun WANG Changfeng YAO Zhengcai ZHAO Jia LIU Shihong XIAO Yue DING Xiaowei TANG Xingchao WANG Yufeng WANG Xin WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期1-24,共24页
Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex ... Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed. 展开更多
关键词 Collaborative manufacturing of shape and performance complex thin-walled component Intelligent process control Material removal mechanism Surface integrity
原文传递
基于知识图谱的复杂薄壁零件机械加工工艺知识建模研究
20
作者 肖彪 徐宝德 +4 位作者 彭仕鑫 尉渊 丁国智 王萌 赵正彩 《航空制造技术》 CSCD 北大核心 2024年第11期76-86,共11页
智能工艺设计是数字孪生环境下工艺设计的核心,零件工艺知识建模是实现基于数字孪生的智能工艺设计的前提。为此,针对航空航天领域复杂薄壁零件机械加工工艺数据结构化程度低、难以重用的问题,提出了典型复杂薄壁零件机械加工工艺知识... 智能工艺设计是数字孪生环境下工艺设计的核心,零件工艺知识建模是实现基于数字孪生的智能工艺设计的前提。为此,针对航空航天领域复杂薄壁零件机械加工工艺数据结构化程度低、难以重用的问题,提出了典型复杂薄壁零件机械加工工艺知识图谱的构建和质量评估方法。首先,对机械加工工艺知识组成和结构进行分析。其次,通过本体建模、知识抽取、知识储存等相关技术实现了工艺知识的可视化表征,并基于Neo4j图数据库实现机械加工工艺知识检索。最后,利用层次分析法对构建完成的知识图谱进行评估,并以框段类零件的机械加工工艺知识为验证对象,得到子图谱的综合准确度为92.28%。试验结果表明,基于知识图谱的工艺知识建模方法切实可行,有助于实现工艺知识的有效组织和重用,为数字孪生的智能工艺设计奠定基础。 展开更多
关键词 复杂薄壁零件 知识图谱 工艺知识建模 数据抽取 图谱质量评估 数字孪生
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部