The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as...The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as the application of Satava-Sestak's, Ozawa's and Kissinger's methods, the mechanism and kinetics of thermal dissociation of this inclusion complex were studied. An additional mass loss is found at 170-180℃. The mechanism of thermal dissociation of CD-MCP is dominated by a one-dimensional random nucleation and subsequent growth process (A2/3). The activation energy Es and the pre-exponential factor AS for the process are 102.14 kJ/mol and 3.63×10^10s^-1, respectively. This ES value shows that there is no strong chemical intere, ctions between β-CD and 1-MC;P,展开更多
The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and r...The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and reverse reactions was proposed.展开更多
The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,e...The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.展开更多
Iron tetranitrosyl complex bearing the thiosulfate ligand (TNIC) is an efficient nitrogen monoxide donor (NO). He shows antitumor properties and may be used as an original drug for the therapy of acute coronary syndro...Iron tetranitrosyl complex bearing the thiosulfate ligand (TNIC) is an efficient nitrogen monoxide donor (NO). He shows antitumor properties and may be used as an original drug for the therapy of acute coronary syndrome. In this work, the reaction of the TNIC with adenosine triphosphoric acid (ATP) was studied. Formation of the products for the reaction of ATP with TNIC was shown by electronic microscopy. The kinetics of the reaction was controlled by spectrofluorometric method, and the complexation constant was measured. The mechanism of interaction of ATP with TNIC was proposed, and the relevant kinetic model satisfactorily described the experimental data, which permitted to calculate the rate constants for these process stages. NMR, IR, and M?ssbauer studies were used for determination of the reaction product structure. NMR study showed TNIC interaction only with adenine part of ATP. The method of IR spectroscopy identified both the absence NO in the reaction products and the occurrence of new Fe-S and Fe-N bonds. M?ssbauer study showed that iron in the reaction products was presented by two forms: Fe(II) and Fe(III). Thus, the structures for the [ATP-Fe2+S] and [ATP-Fe3+S] complexes were proposed.展开更多
The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid...The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.展开更多
The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-fl...The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.展开更多
The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature ...The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25- 40 ℃ . The order of the redox reaction of lactic acid and DDA was found to be first order. The rates increased with the increase in and decreased with the increase in . No free radical was detected. In the view of this the dihydroxymonotelluratoargentate(Ⅲ) species(DMA) is assumed to be the active species. A plausible mechanism involving a two electron transfer is proposed, and the rate \{equation\} derived from the mechanism can be used to explain all the experimental results. The activation parameters(25 ℃) and the rate constants of the rate determining step along with the preequilibrium constants at different temperatures were evaluated.展开更多
The reaction kinetics of bisphenol-S epoxy resin with methyl-acrylic acid in the presence of quaternary ammonium salt catalyst was studied. The reaction rate constants at different temperatures were determined. The re...The reaction kinetics of bisphenol-S epoxy resin with methyl-acrylic acid in the presence of quaternary ammonium salt catalyst was studied. The reaction rate constants at different temperatures were determined. The reaction is first order with respect to epoxy group, zero order with respect to methylacrylic acid and 0.71 order with respect to quaternary ammonium salt catalyst, respectively. The mechanism of this reaction was discussed.展开更多
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acid...The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.展开更多
Conspectus:Redox reactions of Fe-and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments.Due to experimental and analytical challenges associated with complex env...Conspectus:Redox reactions of Fe-and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments.Due to experimental and analytical challenges associated with complex environments,there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems,and most of the studies so far have only focused on simple model systems.To bridge the gap between simple model systems and complex environmental systems,it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation.In this Account,we primarily focused on(1)the oxidative reactivity of Mn-and Fe-oxides and(2)the reductive reactivity of Fe(Ⅱ)/iron oxides in comolex model systems toward contaminant degradation.The effects of common metal ions such as Mn2+,Ca2+,Ni2+,Cr3+and Cu2+,ligands such as small anionic ligands and natural organic matter(NOM),and second metal oxides such as A1,Si and Ti oxides on the redox reactivity of the systems are briefly summarized.展开更多
In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, gl...In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, glycerol dosage and reaction time, and the optimal process conditions were further verified: The ratio of fatty acid to glycerol is 1:1.2, the reaction temperature is 240<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, and the acid value can be reduced to 1.66 mg<span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">KOH/g for 2 h. In addition, the activation energy of the reaction was 54.93 kJ/mol by kinetic study. Combined with the <i>K</i><sub>1</sub> value of each reaction, it was confirmed that the temperature rise was conducive to the progress of the reaction.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">Finally, the high temperature ionization theory of glycerol is put forward, and the mechanism of auto-catalyzed deacidification reaction of glycerol is deduced by using this theory.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">This theory not only explains this study, but also perfectly explains the slow reaction time of low glycerol dosage.</span></span></span></span></span>展开更多
文摘The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as the application of Satava-Sestak's, Ozawa's and Kissinger's methods, the mechanism and kinetics of thermal dissociation of this inclusion complex were studied. An additional mass loss is found at 170-180℃. The mechanism of thermal dissociation of CD-MCP is dominated by a one-dimensional random nucleation and subsequent growth process (A2/3). The activation energy Es and the pre-exponential factor AS for the process are 102.14 kJ/mol and 3.63×10^10s^-1, respectively. This ES value shows that there is no strong chemical intere, ctions between β-CD and 1-MC;P,
文摘The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and reverse reactions was proposed.
基金funded by the Key Projects of Xinjiang Production and Construction Corps(2022AB007)the Key Projects of innovation team of Xinjiang eighth division Construction Corps 2023TD04)Liaoning Innovation Capability Fund(2021-NLTS-12-02).
文摘The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.
文摘Iron tetranitrosyl complex bearing the thiosulfate ligand (TNIC) is an efficient nitrogen monoxide donor (NO). He shows antitumor properties and may be used as an original drug for the therapy of acute coronary syndrome. In this work, the reaction of the TNIC with adenosine triphosphoric acid (ATP) was studied. Formation of the products for the reaction of ATP with TNIC was shown by electronic microscopy. The kinetics of the reaction was controlled by spectrofluorometric method, and the complexation constant was measured. The mechanism of interaction of ATP with TNIC was proposed, and the relevant kinetic model satisfactorily described the experimental data, which permitted to calculate the rate constants for these process stages. NMR, IR, and M?ssbauer studies were used for determination of the reaction product structure. NMR study showed TNIC interaction only with adenine part of ATP. The method of IR spectroscopy identified both the absence NO in the reaction products and the occurrence of new Fe-S and Fe-N bonds. M?ssbauer study showed that iron in the reaction products was presented by two forms: Fe(II) and Fe(III). Thus, the structures for the [ATP-Fe2+S] and [ATP-Fe3+S] complexes were proposed.
基金ProjectsupportedbytheNaturalScienceFoundationofShaanxiProvince (No .98H0 10 )andStateKeyLaboratoryofRareEarthMaterialsChemistryandApplication&PekingUniversity .
文摘The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.
文摘The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.
基金Supported by the National Natural Science Foundation of Hebei Province(No.2 95 0 6 6 )
文摘The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25- 40 ℃ . The order of the redox reaction of lactic acid and DDA was found to be first order. The rates increased with the increase in and decreased with the increase in . No free radical was detected. In the view of this the dihydroxymonotelluratoargentate(Ⅲ) species(DMA) is assumed to be the active species. A plausible mechanism involving a two electron transfer is proposed, and the rate \{equation\} derived from the mechanism can be used to explain all the experimental results. The activation parameters(25 ℃) and the rate constants of the rate determining step along with the preequilibrium constants at different temperatures were evaluated.
文摘The reaction kinetics of bisphenol-S epoxy resin with methyl-acrylic acid in the presence of quaternary ammonium salt catalyst was studied. The reaction rate constants at different temperatures were determined. The reaction is first order with respect to epoxy group, zero order with respect to methylacrylic acid and 0.71 order with respect to quaternary ammonium salt catalyst, respectively. The mechanism of this reaction was discussed.
基金supported by the Special Project Items No.2 in National Long-term Technology Development Plan,China(No.2009ZX02308)
文摘The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.
基金supported by the National Science Foundation under Grants CBET-1762691 and CHE-1808406 to H.Zhang.The authors are thankful to Dr.Zheng Li at University of Washington for the assistance for TOC drawing.
文摘Conspectus:Redox reactions of Fe-and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments.Due to experimental and analytical challenges associated with complex environments,there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems,and most of the studies so far have only focused on simple model systems.To bridge the gap between simple model systems and complex environmental systems,it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation.In this Account,we primarily focused on(1)the oxidative reactivity of Mn-and Fe-oxides and(2)the reductive reactivity of Fe(Ⅱ)/iron oxides in comolex model systems toward contaminant degradation.The effects of common metal ions such as Mn2+,Ca2+,Ni2+,Cr3+and Cu2+,ligands such as small anionic ligands and natural organic matter(NOM),and second metal oxides such as A1,Si and Ti oxides on the redox reactivity of the systems are briefly summarized.
文摘In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, glycerol dosage and reaction time, and the optimal process conditions were further verified: The ratio of fatty acid to glycerol is 1:1.2, the reaction temperature is 240<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, and the acid value can be reduced to 1.66 mg<span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">KOH/g for 2 h. In addition, the activation energy of the reaction was 54.93 kJ/mol by kinetic study. Combined with the <i>K</i><sub>1</sub> value of each reaction, it was confirmed that the temperature rise was conducive to the progress of the reaction.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">Finally, the high temperature ionization theory of glycerol is put forward, and the mechanism of auto-catalyzed deacidification reaction of glycerol is deduced by using this theory.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">This theory not only explains this study, but also perfectly explains the slow reaction time of low glycerol dosage.</span></span></span></span></span>