Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts ...Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.展开更多
In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. S...In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,...In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.展开更多
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu...Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
This paper presents the finding of a novel chaotic system with one source and two saddle-foci in a simple three-dimensional (3D) autonomous continuous time Hopfield neural network. In particular, the system with one...This paper presents the finding of a novel chaotic system with one source and two saddle-foci in a simple three-dimensional (3D) autonomous continuous time Hopfield neural network. In particular, the system with one source and two saddle-foci has a chaotic attractor and a periodic attractor with different initial points, which has rarely been reported in 3D autonomous systems. The complex dynamical behaviours of the system are further investigated by means of a Lyapunov exponent spectrum, phase portraits and bifurcation analysis. By virtue of a result of horseshoe theory in dynamical systems, this paper presents rigorous computer-assisted verifications for the existence of a horseshoe in the system for a certain parameter.展开更多
This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lem...This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundati...Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.展开更多
The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differen...The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.展开更多
A new product conceptual design approach is put forward based on Hopfield neural networks models. By research on the mechanisms of Hopfield neural networks, the associative simulation approaches are proposed. The appr...A new product conceptual design approach is put forward based on Hopfield neural networks models. By research on the mechanisms of Hopfield neural networks, the associative simulation approaches are proposed. The approach is given by Hebb learn- ing law, Hopfield neural networks and crossover and mutation. The calculating models and the calculating formulas for the concep- tual design are put forward. Finally, an example for the conceptual design of a solar energy lamp is given. The better results are ob- tained in the conceptual design.展开更多
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studie...A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.展开更多
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit...The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.展开更多
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel d...This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.展开更多
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural ...This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.展开更多
In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr...In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).展开更多
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金partially supported by the JSPS KAKENHI(JP22H03643,JP19K22891)。
文摘Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counterparts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61503338,61573316,61374152,and 11302195)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374094 and 61503338)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ15F030005)
文摘In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62176189 and 62106181)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (Grant No. Y202002)。
文摘Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
基金Project supported by the National Natural Science Foundation of China(Grant No.60774088)the Program for New Century Excellent Talents in University of China(NCET)+1 种基金the Science & Technology Research Key Project of Educational Ministry of China(Grant No.107024)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin(Grant No.08JCZDJC21900)
文摘This paper presents the finding of a novel chaotic system with one source and two saddle-foci in a simple three-dimensional (3D) autonomous continuous time Hopfield neural network. In particular, the system with one source and two saddle-foci has a chaotic attractor and a periodic attractor with different initial points, which has rarely been reported in 3D autonomous systems. The complex dynamical behaviours of the system are further investigated by means of a Lyapunov exponent spectrum, phase portraits and bifurcation analysis. By virtue of a result of horseshoe theory in dynamical systems, this paper presents rigorous computer-assisted verifications for the existence of a horseshoe in the system for a certain parameter.
基金supported by the Basic Science Research Program Through the National Research Foundation of Korea(NRF) Funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0001045 and 2011-0009273)
文摘This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
文摘Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.
基金Project supported by the National Natural Science Foundation of China (No.10571078)the Natural Science Foundation of Gansu Province of China (No.3ZX062-B25-012)
文摘The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.
基金Partially Supported by National Natural Science Foundation of China(No.50975033,No.60875046)Education Office of Liaoning Province(No.LR2013060)Natural Science Foundation of Liaoning Province(No.2013020123)
文摘A new product conceptual design approach is put forward based on Hopfield neural networks models. By research on the mechanisms of Hopfield neural networks, the associative simulation approaches are proposed. The approach is given by Hebb learn- ing law, Hopfield neural networks and crossover and mutation. The calculating models and the calculating formulas for the concep- tual design are put forward. Finally, an example for the conceptual design of a solar energy lamp is given. The better results are ob- tained in the conceptual design.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
基金This project was supported by the National Natural Science Foundation of China (60074008, 60274007, 60274026) National Doctor foundaction of China (20010487005).
文摘A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.
基金Project supported by the Program for New Century Excellent Talents in University (Grant No NCET-06-0298)the Program for Liaoning Excellent Talents in University (Grant No RC-05-07)+1 种基金the Program for Study of Science of the Educational Department of Liaoning Province, China (Grant No 05L020)the Program for Dalian Science and Technology of China (Grant No2005A10GX106)
文摘The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.
基金supported by National Natural Science Foundation of China (No. 60674027, 60875039, 60904022 and 60974127)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050446001)+2 种基金China Postdoctoral Science Foundation(No. 20070410336)Postdoctoral Foundation of Jiangsu Province(No. 0602042B)Scientific Research Foundation of Qufu Normal University
文摘This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.
基金Project supported by the Science and Technology Support Program of Xingtai,China(Grant No.2019ZC054)。
文摘This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
文摘In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.
文摘In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).