Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
This study,through a re-conceptualization of sociological complexity theory’s epistemological sources,specifically in Edgar Morin’s formulation,sheds light on the theoretical models as well as empirical methodologie...This study,through a re-conceptualization of sociological complexity theory’s epistemological sources,specifically in Edgar Morin’s formulation,sheds light on the theoretical models as well as empirical methodologies of sociological analysis of today’s complex,interconnected,diverse and globalized society and global disorder.Complexity theory leads to a shift in perspective and a transformation of the epistemological status of social sciences with an in-depth intervention of disorder,contingency,case,singular,and non-repeatable in the sociological analysis.The notion of dialogic interplay is placed at the paradigm level and stands out at the heart of the concepts,analyzing the social system as auto-eco-organizer.Similarly,the notion of‘emergence’at macro-micro levels imposes itself as complex,logically requiring overcoming simple,linear thinking and model of explanation to adopt the perspective of organizational rotativity in which the product retroacts by transforming the one producing it,by conceiving a circularity of co-production between individuals and society through interactions.Declining epistemology and sociological complexity theory in the empirical methodology setting,the complex sociological approach is phenomenon-,event/information-and crisis-centered,privileging observation,participation-intervention,and‘live inquiry’.The open,in-depth and possibly non-directive interview is part of clinical sociological methodology,raising the question of the observer-phenomenon-observed relation.展开更多
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t...To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.展开更多
This essay presents a reflection on the main implications of Complexity Theory for science in general, redefining and dispelling myths of traditional science, and Sociology in particular, suggesting a redefinition of ...This essay presents a reflection on the main implications of Complexity Theory for science in general, redefining and dispelling myths of traditional science, and Sociology in particular, suggesting a redefinition of Parsons’ classic concept of Social System, articulated around the property of self-maintenance of order rather than on its possible discontinuity and instability. It argues that Complexity Theory has established the limits of Classic Science, leading to a more realistic awareness of working and evolution mechanisms of Natural and Social Systems and showing the limits of our capacity to predict and control events. Dissipative structures have shown the creative role of time. Instability, emergence, surprise, unpredictability are the rule rather than the exception when systems move away from equilibrium (entropy), even if these processes are generated from a system’s deterministic working mechanisms. Therefore, we have come to realize how constructive the contribution of Complexity is, in regards to the long lasting problem of the relationship between order and disorder. Today, the terms of this relationship have been re-specified in its new configuration of inter-relationship link, according to a unicum which finds its synthesis in self-organization and deterministic chaos concepts. From this perspective, as Prigogine suggested, studies on Complex Systems are heading toward a historical, biological conception of Physics, and a new alliance between natural systems and living, social systems. Non-linearity, far from equilibrium self-organization, emergence and surprise meet at all levels, as this paper attempts to highlight. In Sociology, insights of Complexity Theory have contributed to a new way of thinking about social systems, by re-addressing some fundamental issues starting to social system, emergence and change concepts. The current social system conception as complex dynamical systems is supported by a profitable use of non-liner models (in particular, the Logistic map) in the study of social processes.展开更多
A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures a...A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures are defined to characterize the complexity of the symbolic series. The measures reflect the sensitive dependence of chaotic systems on initial conditions and the randomness of a time series, and thus can distinguish periodic or completely random series from chaotic time series even though the lengths of the time series are not long. Finally, the logistic map and the two-parameter Henon map are studied and the results are satisfactory.展开更多
This paper sets out to argue the relevance for translation studies of complexity theory. It endeavours to argue, though briefly, that translation can be conceptualized as an emergent concept. It then indicates how the...This paper sets out to argue the relevance for translation studies of complexity theory. It endeavours to argue, though briefly, that translation can be conceptualized as an emergent concept. It then indicates how theories of emergence in social studies provide new scope to theorise agency. Lastly, it considers the implications of the conceptualization for translator education. The arguments put forward in this paper lay the foundation for a philosophy of translation, i.e., a meta-theory of translation in which translation is viewed both as emerging from particular complex human interactions such as language and as being co-determined by complex contextual factors.展开更多
This study employs a Q methodology to explore the developmental routines of oral English ability for 12 English major students in China inspired by Complex and Dynamic Systems Theory(CDST).The data analysis suggests t...This study employs a Q methodology to explore the developmental routines of oral English ability for 12 English major students in China inspired by Complex and Dynamic Systems Theory(CDST).The data analysis suggests the next findings:(1)two developmental patterns emerge as the gradual improvement and the strong phase shift influenced by internal and external factors for interactions among different subsystems;(2)guided by CDST,the study proves the importance of self-organization and initial condition in previous studies.According to the above findings,It is highly suggested for teachers to form a holistic view of students’oral English development concerning the non-linear characteristic and individual differences.展开更多
Complexity is one of the leading features of modem control systems. It is caused by the complex properties of controlled plants and the varied requirements in controller designs. In dealing with the control problems w...Complexity is one of the leading features of modem control systems. It is caused by the complex properties of controlled plants and the varied requirements in controller designs. In dealing with the control problems with complexity, in the past two decades, a lot of papers have been published that reported fruitful results on different theoretical backgrounds and with different methodologies, such as differential geometry-based design methods, hybrid system theory, switching control, neural network-based intelligent control, etc.展开更多
This paper presents a qualitative study to investigate the dynamics in second language(L2)learning strategies under the guidance of the complexity theory.A group of Chinese undergraduate students studying at an intern...This paper presents a qualitative study to investigate the dynamics in second language(L2)learning strategies under the guidance of the complexity theory.A group of Chinese undergraduate students studying at an international university in Thailand were selected as the research participants.Research instruments include interviews,observations,records of participants’on-line chat and posts,and a research journal.The research findings indicate that the changes in the participants’strategies for learning English exhibit typical features of the complex system.The study will provide implications for probing into the nature of L2 strategy and for applying complexity theory to future researches on L2 strategies.展开更多
The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe...The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere.展开更多
Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in th...Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in this paper.Through selecting 257 accident investigation reports,45 causative factors and nine accident types are obtained by the three-level coding process of the grounded theory,and the interaction of these factors is analyzed based on the“2-4”model.Accordingly,the aviation accident causation network is constructed based on complex network theory which has scale-free characteristics and small-world properties,the characteristics of causative factors are analyzed by the topology of the network,and the key causative factors of the accidents are identified by the technique for order of preference by similarity to ideal solution(TOPSIS)method.The comparison results show that the method proposed in this paper has the advantages of independent of expert experience,quantitative analysis of accident causative factors and statistical analysis of a lot of accident data,and it has better applicability and advancement.展开更多
Because of poor ground conditions, stoping methods of underhand headings withcemented fill were used in the Jinchuan No. 2 mine, a paste fill system was set up. In order toevaluate the reliability of the new system, i...Because of poor ground conditions, stoping methods of underhand headings withcemented fill were used in the Jinchuan No. 2 mine, a paste fill system was set up. In order toevaluate the reliability of the new system, investigations and trial running have been done. Morethan 20 items of modification or improvements related to paste preparation subsystem, pump and pipesubsystem, auto-controlling and monitoring subsystem were finished. The reliability of the pastefill system was analyzed by using the theory of large complex system, and it is useful inreliability study on paste fill system.展开更多
Based on forbidden patterns in symbolic dynamics, symbolic subsequences are classified and relations between forbidden patterns, correlation dimensions and complexity measures are studied. A complexity measure approac...Based on forbidden patterns in symbolic dynamics, symbolic subsequences are classified and relations between forbidden patterns, correlation dimensions and complexity measures are studied. A complexity measure approach is proposed in order to separate deterministic (usually chaotic) series from random ones and measure the complexities of different dynamic systems. The complexity is related to the correlation dimensions, and the algorithm is simple and suitable for time series with noise. In the paper, the complexity measure method is used to study dynamic systems of the Logistic map and the Henon map with multi-parameters.展开更多
Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficien...Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.展开更多
In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex opt...In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed.展开更多
We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which ...We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which is double complex. By introducing the spatially flat FRW metric, not only the double Friedmann equations but also the two constraint conditions py = 0 and J^2 = 1 are obtained. Farthermore, using parametric DL(z) ansatz, we reconstruct the ω/(z) and V(Ф) for dark energy from real observational data. We find that in the two cases of J = i, pJ = 0, and J = ε, pJ≠0, the corresponding equations of state ω'(z) remain close to -1 at present (z = 0) and change from below -1 to above -1. The results illustrate that the whole spacetime, i.e. the double complex spacetime MC^4(J), may be either ordinary complex (J = i, pJ = 0) or hyperbolic complex (J = ε, pJ≠ 0). And the fate of the universe would be Big Rip in the future.展开更多
On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average ...On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average path length and clustering coefficient are introduced. Based on the two concepts, a novel attribute description of key nodes related to sub-networks is proposed. Moreover, in terms of node deployment density and transmission range, the concept of single-point key nodes and generalized key nodes of WSN are defined, and their decision theorems are investigated.展开更多
Recent years have witnessed a rapid growth of interest in the study of the dynamic behavior of replenishment rules of bullwhip effect. We prove that bullwhip effect and butterfly effect share a same the self-oscillati...Recent years have witnessed a rapid growth of interest in the study of the dynamic behavior of replenishment rules of bullwhip effect. We prove that bullwhip effect and butterfly effect share a same the self-oscillation amplifying mechanism that is the ordering decisions the supplier self-oscillation amplify the perturbations brought by the errors in the processing of retailers' demand information. This results as an explicit self-similar structure of the sensitivity of the system to the initial values duty to the nonlinear mechanism. In this paper, the causes process of the bullwhip effect is described as the internal nonlinear mechanism and study on the complexity of bullwhip effect for order-up-to policy under demand signal processing. The methodology is based on fractal and chaotic theory and allows important insights to be gained about the complexity behavior of bullwhip effect.展开更多
A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of ...A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.展开更多
The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. T...The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction between a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P(A) of a set A" is a non-canonical example to support that P is not equal to NP.展开更多
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
文摘This study,through a re-conceptualization of sociological complexity theory’s epistemological sources,specifically in Edgar Morin’s formulation,sheds light on the theoretical models as well as empirical methodologies of sociological analysis of today’s complex,interconnected,diverse and globalized society and global disorder.Complexity theory leads to a shift in perspective and a transformation of the epistemological status of social sciences with an in-depth intervention of disorder,contingency,case,singular,and non-repeatable in the sociological analysis.The notion of dialogic interplay is placed at the paradigm level and stands out at the heart of the concepts,analyzing the social system as auto-eco-organizer.Similarly,the notion of‘emergence’at macro-micro levels imposes itself as complex,logically requiring overcoming simple,linear thinking and model of explanation to adopt the perspective of organizational rotativity in which the product retroacts by transforming the one producing it,by conceiving a circularity of co-production between individuals and society through interactions.Declining epistemology and sociological complexity theory in the empirical methodology setting,the complex sociological approach is phenomenon-,event/information-and crisis-centered,privileging observation,participation-intervention,and‘live inquiry’.The open,in-depth and possibly non-directive interview is part of clinical sociological methodology,raising the question of the observer-phenomenon-observed relation.
基金The National Natural Science Foundation of China(No.51875429)General Program of Shenzhen Natural Science Foundation(No.JCYJ20190809142805521)Wenzhou Major Program of Scientific and Technological Innovation(No.ZG2021021).
文摘To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.
文摘This essay presents a reflection on the main implications of Complexity Theory for science in general, redefining and dispelling myths of traditional science, and Sociology in particular, suggesting a redefinition of Parsons’ classic concept of Social System, articulated around the property of self-maintenance of order rather than on its possible discontinuity and instability. It argues that Complexity Theory has established the limits of Classic Science, leading to a more realistic awareness of working and evolution mechanisms of Natural and Social Systems and showing the limits of our capacity to predict and control events. Dissipative structures have shown the creative role of time. Instability, emergence, surprise, unpredictability are the rule rather than the exception when systems move away from equilibrium (entropy), even if these processes are generated from a system’s deterministic working mechanisms. Therefore, we have come to realize how constructive the contribution of Complexity is, in regards to the long lasting problem of the relationship between order and disorder. Today, the terms of this relationship have been re-specified in its new configuration of inter-relationship link, according to a unicum which finds its synthesis in self-organization and deterministic chaos concepts. From this perspective, as Prigogine suggested, studies on Complex Systems are heading toward a historical, biological conception of Physics, and a new alliance between natural systems and living, social systems. Non-linearity, far from equilibrium self-organization, emergence and surprise meet at all levels, as this paper attempts to highlight. In Sociology, insights of Complexity Theory have contributed to a new way of thinking about social systems, by re-addressing some fundamental issues starting to social system, emergence and change concepts. The current social system conception as complex dynamical systems is supported by a profitable use of non-liner models (in particular, the Logistic map) in the study of social processes.
基金supported by the Scientific Research Fund of Zhejiang Provincial Education Department of China (Grant No 20070814)the National Natural Science Foundation of China (Grant No 10871168)
文摘A new method is proposed to transform the time series gained from a dynamic system to a symbolic series which extracts both overall and local information of the time series. Based on the transformation, two measures are defined to characterize the complexity of the symbolic series. The measures reflect the sensitive dependence of chaotic systems on initial conditions and the randomness of a time series, and thus can distinguish periodic or completely random series from chaotic time series even though the lengths of the time series are not long. Finally, the logistic map and the two-parameter Henon map are studied and the results are satisfactory.
文摘This paper sets out to argue the relevance for translation studies of complexity theory. It endeavours to argue, though briefly, that translation can be conceptualized as an emergent concept. It then indicates how theories of emergence in social studies provide new scope to theorise agency. Lastly, it considers the implications of the conceptualization for translator education. The arguments put forward in this paper lay the foundation for a philosophy of translation, i.e., a meta-theory of translation in which translation is viewed both as emerging from particular complex human interactions such as language and as being co-determined by complex contextual factors.
文摘This study employs a Q methodology to explore the developmental routines of oral English ability for 12 English major students in China inspired by Complex and Dynamic Systems Theory(CDST).The data analysis suggests the next findings:(1)two developmental patterns emerge as the gradual improvement and the strong phase shift influenced by internal and external factors for interactions among different subsystems;(2)guided by CDST,the study proves the importance of self-organization and initial condition in previous studies.According to the above findings,It is highly suggested for teachers to form a holistic view of students’oral English development concerning the non-linear characteristic and individual differences.
文摘Complexity is one of the leading features of modem control systems. It is caused by the complex properties of controlled plants and the varied requirements in controller designs. In dealing with the control problems with complexity, in the past two decades, a lot of papers have been published that reported fruitful results on different theoretical backgrounds and with different methodologies, such as differential geometry-based design methods, hybrid system theory, switching control, neural network-based intelligent control, etc.
文摘This paper presents a qualitative study to investigate the dynamics in second language(L2)learning strategies under the guidance of the complexity theory.A group of Chinese undergraduate students studying at an international university in Thailand were selected as the research participants.Research instruments include interviews,observations,records of participants’on-line chat and posts,and a research journal.The research findings indicate that the changes in the participants’strategies for learning English exhibit typical features of the complex system.The study will provide implications for probing into the nature of L2 strategy and for applying complexity theory to future researches on L2 strategies.
文摘The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere.
基金supported by the Civil Aviation Joint Fund of National Natural Science Foundation of China(No.U1533112)。
文摘Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in this paper.Through selecting 257 accident investigation reports,45 causative factors and nine accident types are obtained by the three-level coding process of the grounded theory,and the interaction of these factors is analyzed based on the“2-4”model.Accordingly,the aviation accident causation network is constructed based on complex network theory which has scale-free characteristics and small-world properties,the characteristics of causative factors are analyzed by the topology of the network,and the key causative factors of the accidents are identified by the technique for order of preference by similarity to ideal solution(TOPSIS)method.The comparison results show that the method proposed in this paper has the advantages of independent of expert experience,quantitative analysis of accident causative factors and statistical analysis of a lot of accident data,and it has better applicability and advancement.
文摘Because of poor ground conditions, stoping methods of underhand headings withcemented fill were used in the Jinchuan No. 2 mine, a paste fill system was set up. In order toevaluate the reliability of the new system, investigations and trial running have been done. Morethan 20 items of modification or improvements related to paste preparation subsystem, pump and pipesubsystem, auto-controlling and monitoring subsystem were finished. The reliability of the pastefill system was analyzed by using the theory of large complex system, and it is useful inreliability study on paste fill system.
基金Project supported by the National Natural Science Foundation of China (Grant No.10871168)
文摘Based on forbidden patterns in symbolic dynamics, symbolic subsequences are classified and relations between forbidden patterns, correlation dimensions and complexity measures are studied. A complexity measure approach is proposed in order to separate deterministic (usually chaotic) series from random ones and measure the complexities of different dynamic systems. The complexity is related to the correlation dimensions, and the algorithm is simple and suitable for time series with noise. In the paper, the complexity measure method is used to study dynamic systems of the Logistic map and the Henon map with multi-parameters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372076,61971348,and 62001351)Foundation of Shaanxi Key Laboratory of Information Communication Network and Security(Grant No.ICNS201802)+1 种基金Natural Science Basic Research Program of Shaanxi,China(Grant No.2021JM-142)Key Research and Development Program of Shaanxi Province,China(Grant No.2019ZDLGY09-02)。
文摘Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.
文摘In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10573004
文摘We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC^4(J), which is double complex. By introducing the spatially flat FRW metric, not only the double Friedmann equations but also the two constraint conditions py = 0 and J^2 = 1 are obtained. Farthermore, using parametric DL(z) ansatz, we reconstruct the ω/(z) and V(Ф) for dark energy from real observational data. We find that in the two cases of J = i, pJ = 0, and J = ε, pJ≠0, the corresponding equations of state ω'(z) remain close to -1 at present (z = 0) and change from below -1 to above -1. The results illustrate that the whole spacetime, i.e. the double complex spacetime MC^4(J), may be either ordinary complex (J = i, pJ = 0) or hyperbolic complex (J = ε, pJ≠ 0). And the fate of the universe would be Big Rip in the future.
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Natural Science Foundation of China(No.60503015)
文摘On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average path length and clustering coefficient are introduced. Based on the two concepts, a novel attribute description of key nodes related to sub-networks is proposed. Moreover, in terms of node deployment density and transmission range, the concept of single-point key nodes and generalized key nodes of WSN are defined, and their decision theorems are investigated.
文摘Recent years have witnessed a rapid growth of interest in the study of the dynamic behavior of replenishment rules of bullwhip effect. We prove that bullwhip effect and butterfly effect share a same the self-oscillation amplifying mechanism that is the ordering decisions the supplier self-oscillation amplify the perturbations brought by the errors in the processing of retailers' demand information. This results as an explicit self-similar structure of the sensitivity of the system to the initial values duty to the nonlinear mechanism. In this paper, the causes process of the bullwhip effect is described as the internal nonlinear mechanism and study on the complexity of bullwhip effect for order-up-to policy under demand signal processing. The methodology is based on fractal and chaotic theory and allows important insights to be gained about the complexity behavior of bullwhip effect.
文摘A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.
文摘The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction between a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P(A) of a set A" is a non-canonical example to support that P is not equal to NP.