Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtain...Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.展开更多
Common compliant joints generally have limited range of motion, reduced fatigue life and high stress concentration. To overcome these shortcomings, periodically corrugated cantilever beam is applied to design complian...Common compliant joints generally have limited range of motion, reduced fatigue life and high stress concentration. To overcome these shortcomings, periodically corrugated cantilever beam is applied to design compliant joints. Basic corrugated beam unit is modeled by using pseudo-rigid-body method. The trajectory and deformation behavior of periodically corrugated cantilever beam are estimated by the transformation of coordinate and superposition of the deformation of corrugated beam units. Finite element analysis(FEA) is carried out on corrugated cantilever beam to estimate the accuracy of the pseudo-rigid-body model. Results show that the kinetostatic behaviors obtained by this method, which has a relative error less than 6%, has good applicability and corrugated cantilever beam has the characteristics of a large range of motion and high mechanical strength. The corrugated cantilever beam is then applied to design a flexible rotational joint to obtain a larger angle output. The paper proposes a pseudo-rigid-body model for corrugated cantilever beam and designed a flexible rotational joint with large angle output.展开更多
There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions...There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.展开更多
This paper presents an in-depth study of Equivalent beam model (EBM).Firstly three-dimensional (3D) finite element analysis (FEA) model for circular flexure hinge developed by Zettl et al.was verified by the compariso...This paper presents an in-depth study of Equivalent beam model (EBM).Firstly three-dimensional (3D) finite element analysis (FEA) model for circular flexure hinge developed by Zettl et al.was verified by the comparison with Smith's experimental results and the 3D FEA model was feasible within 5.5% error.Then the accuracy of Timoshenko short-beam due to shear force was verified based on finite element method.The results showed that the EBM has good accuracy within 5% error for 1≤r/t≤3.Finally the EBM methodology was applied for the simulation optimal design of a bridge-type compliant mechanism.The results showed that the EBM methodology has very high numerical efficiency and satisfactory accuracy for simulation optimal design of planar compliant mechanism with flexure hinges.展开更多
A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is m...A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with parallel linear and torsional dampers(Kelvin-Voigt model). The superstructure adds to the kinetic energy of the system without affecting the potential energy, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its natural frequencies further. The empty space factor due to the truss-type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes satisfying the end condition. The weights are evaluated by the Rayleigh-Ritz(RR) method, and verified using finite element method(FEM). The weight of the superstructure acts as an axial compressive load on the beam. Kelvin-Voigt model of structural damping is included.A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. A parametric study is done for various magnitudes of tip mass and various levels of submergence. The computational efficiency and accuracy of the Rayleigh-Ritz method, as compared to the FEA, has been demonstrated. The advantage of using closed-form trial functions is clearly seen in the efficacy of calculating the various energy components in the RR method.展开更多
Polishing plays an indispensable role in optical processing,especially for large-aperture optical reflective mirrors with freeform surfaces.Robotic polishing requires effective control of the contact force between the...Polishing plays an indispensable role in optical processing,especially for large-aperture optical reflective mirrors with freeform surfaces.Robotic polishing requires effective control of the contact force between the robot and the mirror during processing.In order to maintain a constant contact force during polishing,traditional polishing robots rely on closed-loop control of air cylinders,whose performances heavily rely on high-fidelity force sensing and real-time control.This paper proposes to employ a compliant constant-force mechanism in the end-effector of a polishing robot to passively maintain a constant force between the robot and the mirror,thus eliminating the requirement for force sensing and closed-loop control.The compliant constant force mechanism utilizing the second bending mode of fixed-guided compliant beams is adopted and elaborated for the passive end-effector.An end-effector providing a constant contact force of 40 N is designed and prototyped.The polishing experiment shows that the passive constant-force end-effector provides stable contact force between the robot and the mirror with fluctuation within 3.43 N,and achieves RMS(Root Mean Square)lower thanλ/10(λ=632.8 nm)of the polished surface of the largeaperture optical reflective mirror.It is concluded that the constant-force compliant mechanism provides a low-cost and reliable solution for force control in robotic polishing.展开更多
Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are com...Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51205134,91223201)Doctoral Fund of Ministry of Education of China(Grant No.20120172120001)Research Project of State Key Laboratory of Mechanical System and Vibration,China(Grant No.MSV201405)
文摘Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.
基金supported by National Natural Science Foundation of China(Grant Nos.51205134,91223201)Doctoral Fund of Ministry of Education of China(Grant No.20120172120001)+2 种基金Research Project of State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV201405)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(GDUPS,2010)Fundamental Research Funds for the Central Universities(Grant No.2013ZM012)
文摘Common compliant joints generally have limited range of motion, reduced fatigue life and high stress concentration. To overcome these shortcomings, periodically corrugated cantilever beam is applied to design compliant joints. Basic corrugated beam unit is modeled by using pseudo-rigid-body method. The trajectory and deformation behavior of periodically corrugated cantilever beam are estimated by the transformation of coordinate and superposition of the deformation of corrugated beam units. Finite element analysis(FEA) is carried out on corrugated cantilever beam to estimate the accuracy of the pseudo-rigid-body model. Results show that the kinetostatic behaviors obtained by this method, which has a relative error less than 6%, has good applicability and corrugated cantilever beam has the characteristics of a large range of motion and high mechanical strength. The corrugated cantilever beam is then applied to design a flexible rotational joint to obtain a larger angle output. The paper proposes a pseudo-rigid-body model for corrugated cantilever beam and designed a flexible rotational joint with large angle output.
基金Supported by National Science Foundation Research of the United States (Grant No.1663345)National Natural Science Foundation of China(Grant No.51675396)Fundamental Research Fund for the Central Universities(Grant No.12K5051204021)
文摘There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.
文摘This paper presents an in-depth study of Equivalent beam model (EBM).Firstly three-dimensional (3D) finite element analysis (FEA) model for circular flexure hinge developed by Zettl et al.was verified by the comparison with Smith's experimental results and the 3D FEA model was feasible within 5.5% error.Then the accuracy of Timoshenko short-beam due to shear force was verified based on finite element method.The results showed that the EBM has good accuracy within 5% error for 1≤r/t≤3.Finally the EBM methodology was applied for the simulation optimal design of a bridge-type compliant mechanism.The results showed that the EBM methodology has very high numerical efficiency and satisfactory accuracy for simulation optimal design of planar compliant mechanism with flexure hinges.
文摘A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with parallel linear and torsional dampers(Kelvin-Voigt model). The superstructure adds to the kinetic energy of the system without affecting the potential energy, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its natural frequencies further. The empty space factor due to the truss-type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes satisfying the end condition. The weights are evaluated by the Rayleigh-Ritz(RR) method, and verified using finite element method(FEM). The weight of the superstructure acts as an axial compressive load on the beam. Kelvin-Voigt model of structural damping is included.A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. A parametric study is done for various magnitudes of tip mass and various levels of submergence. The computational efficiency and accuracy of the Rayleigh-Ritz method, as compared to the FEA, has been demonstrated. The advantage of using closed-form trial functions is clearly seen in the efficacy of calculating the various energy components in the RR method.
基金National Natural Science Foundation of China(Grant No.U1913213)West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2016A10)Shanxi Provincial Key Research and Development Projects of China(Grant No.2018ZDXM-GY-105).
文摘Polishing plays an indispensable role in optical processing,especially for large-aperture optical reflective mirrors with freeform surfaces.Robotic polishing requires effective control of the contact force between the robot and the mirror during processing.In order to maintain a constant contact force during polishing,traditional polishing robots rely on closed-loop control of air cylinders,whose performances heavily rely on high-fidelity force sensing and real-time control.This paper proposes to employ a compliant constant-force mechanism in the end-effector of a polishing robot to passively maintain a constant force between the robot and the mirror,thus eliminating the requirement for force sensing and closed-loop control.The compliant constant force mechanism utilizing the second bending mode of fixed-guided compliant beams is adopted and elaborated for the passive end-effector.An end-effector providing a constant contact force of 40 N is designed and prototyped.The polishing experiment shows that the passive constant-force end-effector provides stable contact force between the robot and the mirror with fluctuation within 3.43 N,and achieves RMS(Root Mean Square)lower thanλ/10(λ=632.8 nm)of the polished surface of the largeaperture optical reflective mirror.It is concluded that the constant-force compliant mechanism provides a low-cost and reliable solution for force control in robotic polishing.
基金supported by the National Natural Science Foundation of China (No. 51305013)
文摘Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.