The response statistics of a compliant offshore structure excited by slowly varying wave drift forces is calculated by use of a numerical path integral solution method. The path integral solution is based on the Ganss...The response statistics of a compliant offshore structure excited by slowly varying wave drift forces is calculated by use of a numerical path integral solution method. The path integral solution is based on the Ganss-Legendre interpolation scheme, and the values of the response probability density are obtained at the Gauss quadrature points in sub-intervals. It is demonstrated that a distinct advantage of the path integral solution is that the joint probability density of the response displacement and velocity is one of the by products of the calculations. This makes it possible to calculate the mean level up-crossing rates, which provides estimates of the exceedance probabilities of specified response levels for given time periods.展开更多
The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that pra...The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.展开更多
文摘The response statistics of a compliant offshore structure excited by slowly varying wave drift forces is calculated by use of a numerical path integral solution method. The path integral solution is based on the Ganss-Legendre interpolation scheme, and the values of the response probability density are obtained at the Gauss quadrature points in sub-intervals. It is demonstrated that a distinct advantage of the path integral solution is that the joint probability density of the response displacement and velocity is one of the by products of the calculations. This makes it possible to calculate the mean level up-crossing rates, which provides estimates of the exceedance probabilities of specified response levels for given time periods.
基金the National High Technology Research and Development Program of China(863 Program,Grant No. 2001AA602015)the National Natural Science Foundation of China (Grant No.10672029)
文摘The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.