期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intensity Evolution of Zonal Shear Line over the Tibetan Plateau in Summer:A Perspective of Divergent and Rotational Kinetic Energies 被引量:2
1
作者 Xiaohong BAO Xiuping YAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1021-1033,共13页
Based on the ERA5 reanalysis datasets during 1980-2019,a total of eleven zonal shear lines(ZSLs)that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composi... Based on the ERA5 reanalysis datasets during 1980-2019,a total of eleven zonal shear lines(ZSLs)that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composite analysis.By decomposing the kinetic energy(K)near the ZSL into divergent and rotational kinetic energies(K_(D)and K_(R))and the kinetic energy of interaction between the divergent wind and the rotational wind(K_(R)D),the influence of the rotational and divergent winds on the evolution of the ZSL intensity is investigated from the perspective of K_(D)and K_(R).The main results are as follows.The ZSL is a comprehensive reflection of rotation and convergence.The intensity evolution of ZSL is essentially synchronized with those of K,K_(R),and K_(RD)but lags behind K_(D)by about three hours.The enhancement of K is mainly contributed by K_(R),which is governed by the conversion from K_(D)to K_(R).Furthermore,the increase in the conversion from K_(D)to K_(R)is controlled by the geostrophic effect term Af,which is determined by the joint enhancement of the zonal rotational and meridional divergent wind components(u_(R)and v_(D)).Therefore,the joint enhancement of u_(R)and v_(D)controls the increase of the ZSL intensity,leading to increased precipitation. 展开更多
关键词 zonal shear line over the Tibetan Plateau intensity evolution divergent and rotational kinetic energies joint action of the zonal rotational and meridional divergent wind components
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部