A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces...A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.展开更多
A sub-regular solution model SELF-SReM4 used to evaluate activity of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Laboratory of Ferrometallurgy.The application ...A sub-regular solution model SELF-SReM4 used to evaluate activity of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Laboratory of Ferrometallurgy.The application of SELF-SReM4 in C-Mn-Fe-Si system without the SiC formation has been introduced in previous paper.It’s application for molten slag of MnO-SiO2-Al2O3-CaO was introduced in this paper.They provide a basis for the prediction of the metal-slag equilibrium conditions.展开更多
Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for th...Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for this problem.Firstly,the sub-bands of the new method are made up of the wavelet packets (WP) coefficients.Secondly,the selection criterion of the new method is a combination of the mutual information (MI),kurtosis and sparsity.One sub-band or a sub-bands group obtained from the new method are more suitable as the inputs parameters of the algorithm of ICA than mixed images.The new method has been applied into the BSS of partially dependent images and highly dependent images successfully.According to the separation experiments,it is shown that the separation efficacy of the new method is more accurate and robust.展开更多
In this paper, we present a novel and efficient scheme for detection of P300 component of the event-related potential in the Brain Computer Interface (BCI) speller paradigm that needs significantly less EEG channels a...In this paper, we present a novel and efficient scheme for detection of P300 component of the event-related potential in the Brain Computer Interface (BCI) speller paradigm that needs significantly less EEG channels and uses a minimal subset of effective features. Removing unnecessary channels and reducing the feature dimension resulted in lower cost and shorter time and thus improved the BCI implementation. The idea was to employ a proper method to optimize the number of channels and feature vectors while keeping high accuracy in classification performance. Optimal channel selection was based on both discriminative criteria and forward-backward investigation. Besides, we obtained a minimal subset of effective features by choosing the discriminant coefficients of wavelet decomposition. Our algorithm was tested on dataset II of the BCI competition 2005. We achieved 92% accuracy using a simple LDA classifier, as compared with the second best result in BCI 2005 with an accuracy of 90.5% using SVM for classification which required more computation, and against the highest accuracy of 96.5% in BCI 2005 that used SVM and much more channels requiring excessive calculations. We also applied our proposed scheme on Hoffmann’s dataset to evaluate the effectiveness of channel reduction and achieved acceptable results.展开更多
文摘A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.
文摘A sub-regular solution model SELF-SReM4 used to evaluate activity of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Laboratory of Ferrometallurgy.The application of SELF-SReM4 in C-Mn-Fe-Si system without the SiC formation has been introduced in previous paper.It’s application for molten slag of MnO-SiO2-Al2O3-CaO was introduced in this paper.They provide a basis for the prediction of the metal-slag equilibrium conditions.
文摘Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for this problem.Firstly,the sub-bands of the new method are made up of the wavelet packets (WP) coefficients.Secondly,the selection criterion of the new method is a combination of the mutual information (MI),kurtosis and sparsity.One sub-band or a sub-bands group obtained from the new method are more suitable as the inputs parameters of the algorithm of ICA than mixed images.The new method has been applied into the BSS of partially dependent images and highly dependent images successfully.According to the separation experiments,it is shown that the separation efficacy of the new method is more accurate and robust.
文摘In this paper, we present a novel and efficient scheme for detection of P300 component of the event-related potential in the Brain Computer Interface (BCI) speller paradigm that needs significantly less EEG channels and uses a minimal subset of effective features. Removing unnecessary channels and reducing the feature dimension resulted in lower cost and shorter time and thus improved the BCI implementation. The idea was to employ a proper method to optimize the number of channels and feature vectors while keeping high accuracy in classification performance. Optimal channel selection was based on both discriminative criteria and forward-backward investigation. Besides, we obtained a minimal subset of effective features by choosing the discriminant coefficients of wavelet decomposition. Our algorithm was tested on dataset II of the BCI competition 2005. We achieved 92% accuracy using a simple LDA classifier, as compared with the second best result in BCI 2005 with an accuracy of 90.5% using SVM for classification which required more computation, and against the highest accuracy of 96.5% in BCI 2005 that used SVM and much more channels requiring excessive calculations. We also applied our proposed scheme on Hoffmann’s dataset to evaluate the effectiveness of channel reduction and achieved acceptable results.