The cavitated bifurcation problem in a solid sphere composed oftwo compressible hyper-elas- tic materials is examined. Thebifurcation solution for the composed sphere under a uniform radialtensile boundary dead-load i...The cavitated bifurcation problem in a solid sphere composed oftwo compressible hyper-elas- tic materials is examined. Thebifurcation solution for the composed sphere under a uniform radialtensile boundary dead-load is obtained. The bifurcation curves andthe stress contributions subsequent to the cavita- tion are given.The right and left bifurcation as well as the catastrophe andconcentration of stresses are ana- lyzed. The stability of solutionsis discussed through an energy comparison.展开更多
Sensitive materials mainly composed of ZnO and their multi-functional properties were investigated. The temperature extent of linear resistance, non-linear deviation and endurance ability of surge energy were further ...Sensitive materials mainly composed of ZnO and their multi-functional properties were investigated. The temperature extent of linear resistance, non-linear deviation and endurance ability of surge energy were further discussed. The effect of Mg^2+, AI^3+ and Si^4+, which could be solid solutioned in ZnO grain and the function of Y^3+ ion segregated out in grain boundary were studied as well. The function of Ti was analyzed emphatically.展开更多
The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was stud...The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.展开更多
基金the National Natttral Science Foundation of China(No.19802012)
文摘The cavitated bifurcation problem in a solid sphere composed oftwo compressible hyper-elas- tic materials is examined. Thebifurcation solution for the composed sphere under a uniform radialtensile boundary dead-load is obtained. The bifurcation curves andthe stress contributions subsequent to the cavita- tion are given.The right and left bifurcation as well as the catastrophe andconcentration of stresses are ana- lyzed. The stability of solutionsis discussed through an energy comparison.
基金National Natural Science Foundation of China!(No. 59972011).
文摘Sensitive materials mainly composed of ZnO and their multi-functional properties were investigated. The temperature extent of linear resistance, non-linear deviation and endurance ability of surge energy were further discussed. The effect of Mg^2+, AI^3+ and Si^4+, which could be solid solutioned in ZnO grain and the function of Y^3+ ion segregated out in grain boundary were studied as well. The function of Ti was analyzed emphatically.
文摘The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.